整 式 的 乘 除知识点归纳:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。如:bca22的 系数为2 ,次数为 4,单独的一个非零数的次数是0。2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。如:122xaba,项有2a 、ab2、 x 、1,二次项为2a 、ab2,一次项为x ,常数项为 1,各项次数分别为2,2,1,0,系数分别为 1,-2 ,1,1,叫二次四项式。3、整式:单项式和多项式统称整式。注意:凡分母含有字母代数式都不是整式。也不是单项式和多项式。4、多项式按字母的升(降)幂排列:如:1223223yxyyxx按 x 的升幂排列:3223221xyxxyy按 x 的降幂排列:1223223yxyyxx5、同底数幂的乘法法则:nmnmaaa?(nm,都是正整数)同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。如:532)()()(bababa?6、幂的乘方法则:mnnmaa )((nm, 都是正整数)幂的乘方,底数不变,指数相乘。如:10253)3(幂的乘方法则可以逆用:即mnnmmnaaa)()(如:23326)4()4(4已知: 23a, 326b,求3102ab 的值;7、积的乘方法则:nnnbaab)(( n 是正整数)积的乘方,等于各因数乘方的积。如:(523)2zyx=5101555253532)()()2(zyxzyx???8、同底数幂的除法法则:nmnmaaa(nma,,0都是正整数,且)nm同底数幂相除,底数不变,指数相减。如:3334)()()(baababab9、零指数和负指数;10a,即任何不等于零的数的零次方等于1。ppaa1 (pa,0是正整数),即一个不等于零的数的p 次方等于这个数的p 次方的倒数。如:81)21(23310、科学记数法:如:0.00000721=7.21610(第一个不为零的数前面有几个零就是负几次方)11、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。注意:①积的系数等于各因式系数的积,先确定符号,再计算绝对值。②相同字母相乘,运用同底数幂的乘法法则。③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式④单项式乘法法则对于三个以上的单项式相乘同样适用。⑤单项式乘以单项式,结果仍是一个单项式。如:? xyzyx323212、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即mcmbmacbam)((cbam,,,都是单项式 ) 注意:①...