下载后可任意编辑 4-1 设单位反馈系统的开环传递函数为:。当系统作用有下列输入信号时:,试求系统的稳态输出。解:系统的闭环传递函数为:这是一个一阶系统。系统增益为:,时间常数为:其幅频特性为:其相频特性为:当输入为,即信号幅值为:,信号频率为:,初始相角为:。代入幅频特性和相频特性,有:所以,系统的稳态输出为:4-2 已知系统的单位阶跃响应为:。试求系统的幅频特性和相频特性。解:对输出表达式两边拉氏变换:由于,且有(单位阶跃)。所以系统的闭环传递函数为:可知,这是由两个一阶环节构成的系统,时间常数分别为:系统的幅频特性为二个一阶环节幅频特性之积,相频特性为二个一阶环节相频特性之和:----------------------------精品 word 文档 值得下载 值得拥有---------------------------------------------------------------------------------------------------------------------------------------------------------------------------下载后可任意编辑4-3 已知系统开环传递函数如下,试概略绘出奈氏图。(1)(2)(3)(4)解:手工绘制奈氏图,只能做到概略绘制,很难做到精确。所谓“概略”,即计算与推断奈氏曲线的起点、终点、曲线与坐标轴的交点、相角变化范围等,这就可以绘制出奈氏曲线的大致形状。对一些不太复杂的系统,已经可以从曲线中读出系统的部分基本性能指标了。除做到上述要求外,若再多取若干点(如 6-8 点),并将各点光滑连线。这就一定程度上弥补了要求 A 的精度不足的弱点。但因为要进行函数计算,例如求出实虚频率特性表格,工作量要大些。在本题解答中,作如下处理:小题(1):简单的一阶惯性系统,教材中已经讨论得比较详细了。解题中只是简单套用。小题(2):示范绘制奈氏图的完整过程。小题(3)、小题(4):示范概略绘制奈氏图方法。4-3(1)这是一个一阶惯性(环节)系统,例 4-3 中已详细示范过(当 T=0.5 时),奈氏曲线是一个半圆。而表 4-2给出了任意时间常数 T 下的实虚频率特性数据。可以套用至本题。① 系统参数:0 型,一阶,时间常数② 起终点奈氏曲线的起点:(1,0),正实轴奈氏曲线的终点:(0,0),原点奈氏曲线的相角变化范围:(0,-90°),第 IV 象限③ 求频率特性。据式(4-29)已知:实频特性:虚频特性:④ 可以得出如下实频特性和虚频特性数值:01012.525508010012520040080010001.000.990.980.940.800.610.500.390.200.06...