1 / 18 公式一、 高等数学导数公式:基本积分表:三角函数的有理式积分:axxaaactgxxxtgxxxxctgxxtgxaxxln1)(logln)(csc)(cscsec)(seccsc)(sec)(22222211)(11)(11)(arccos11)(arcsinxarcctgxxarctgxxxxxCaxxaxdxCshxchxdxCchxshxdxCaadxaCxctgxdxxCxdxtgxxCctgxxdxxdxCtgxxdxxdxxx)ln(lncsccscsecseccscsinseccos22222222CaxxadxCxaxaaxadxCaxaxaaxdxCaxarctgaxadxCctgxxxdxCtgxxxdxCxctgxdxCxtgxdxarcsinln21ln211csclncscseclnsecsinlncosln22222222CaxaxaxdxxaCaxxaaxxdxaxCaxxaaxxdxaxInnxdxxdxInnnnarcsin22ln22)ln(221cossin2222222222222222222220202 / 18 222212211cos12sinududxxtguuuxuux, , , 一些初等函数:两个重要极限:三角函数公式:· 诱导公式:函数角 A sin cos tg ctg -α-sin αcos α-tg α-ctg α90°-αcos αsin αctg αtg α90°+αcos α-sin α-ctg α -tg α180°-αsin α-cos α-tg α-ctg α180°+α-sin α-cos αtg αctg α270°-α-cos α-sin αctg αtg α270°+α-cos αsin α-ctg α -tg α360°-α-sin αcos α-tg α-ctg α360°+αsin αcos αtg αctg α· 和差角公式:· 和差化积公式:2sin2sin2coscos2cos2cos2coscos2sin2cos2sinsin2cos2sin2sinsinctgctgctgctgctgtgtgtgtgtg1)(1)(sinsincoscos)cos(sincoscossin)sin(xxarthxxxarchxxxarshxeeeechxshxthxeechxeeshxxxxxxxxx11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim1sinlim0exxxxxx3 / 18 · 倍角公式:· 半角公式:cos1sinsincos1cos1cos12cos1sinsincos1cos1cos122cos12cos2cos12sinctgtg · 正弦定理:RCcBbAa2sinsinsin· 余弦定理:Cabbaccos2222· 反三角函数性质:arcctgxarctgxxx2arccos2arcsin 高阶导数公式——莱布尼兹(Leibniz)公式:)()()()2()1()(0)()()(!)1()1(!2)1()(nkknnnnnkkknknnuvvukknnnvunnvnuvuvuCuv中值定理及导数应用:拉格朗日中值定理。时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:xxFfaFbFafbfabfafbf)(F)()()()()()())(()()(曲率:.1;0.)1(limMsMM:.,13202aKaKyydsdsKMMsKtgydxydss的圆:半径为直线:点的曲率:弧长。:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:定积分的近似计算:23333133cos3cos43cossin4sin33sintgtgtgtg222222122212sincossin211cos22cosc...