电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

初等数论中的几个重要定理

初等数论中的几个重要定理_第1页
1/6
初等数论中的几个重要定理_第2页
2/6
初等数论中的几个重要定理_第3页
3/6
初等数论中的几个重要定理 基础知识 定义(欧拉(Euler)函数)一组数称为是模的既约剩余系,如果对任意的 ,且对于任意的,若=1,则有且仅有一个是对模的剩余,即。并定义中和互质的数的个数,称为欧拉(Euler)函数。 这是数论中的非常重要的一个函数,显然,而对于,就是1,2,„,中与互素的数的个数,比如说是素数,则有。 引理:;可用容斥定理来证(证明略)。 定理1:(欧拉(Euler)定理)设=1,则。 分析与解答:要证,我们得设法找出个相乘,由个数我们想到中与互质的的个数:,由于=1,从而也是与互 质 的个数,且两 两 余数不 一样 ,故(),而()=1,故。 证明:取模的一个既约剩余系,考虑,由于与互质,故仍与互质,且有 ,于是对每个 都能找到唯一的一个,使 得,这 种 对应 关 系是一一的,从 而,。 ,,故。证毕。 这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题。 定理2:(费尔马(Fermat)小定理)对于质数及任意整数有。 设为质数,若是的倍数,则。若不是的倍数,则由引理及欧拉定理得,,由此即得。 定理推论:设为质数,是与互质的任一整数,则。 定理3:(威尔逊(Wilson)定理)设为质数,则。 分析与解答:受欧拉定理的影响,我们也找个数,然后来对应乘法。 证明:对于,在中,必然有一个数除以余1,这是因为则好是的一个剩余系去0。 从而对,使得; 若,,则,,故 对 于,有 。即对于不同的对应于不同的,即中数可两两配对,其积除以余1,然后有 ,使,即与它自己配对,这时,,或,或。 除外,别的数可两两配对,积除以余1。故。 定义:设为整系数多项式(),我们把含有的一组同余式()称为同余方组程。特别地,,当均为的一次整系数多项式时,该同余方程组称为一次同余方程组.若整数同时满足: ,则剩余类(其中)称为同余方程组的一个解,写作 定理4:(中国剩余定理)设是两两互素的正整数,那么对于任意整数,一次同余方程组, 必有解,且解可以写为: 这里,,以及满足,(即为对模的逆)。 中国定理的作用在于它能断言所说的同余式组当模两两互素时一定有解,而对于解的形式并不重要。 定理5:(拉格郎日定理)设是质数,是非负整数,多项式是一个模为次的整系数多项式(即 ),则同余方程至多有个解(在模有意义的情况下)。 定理6:若为对模的阶,为某一正整数,满足,则必为的倍数。 以上介绍的只...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

初等数论中的几个重要定理

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部