电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

勾股定理的逆定理VIP免费

勾股定理的逆定理_第1页
1/7
勾股定理的逆定理_第2页
2/7
勾股定理的逆定理_第3页
3/7
勾股定理的逆定理勾股定理的逆定理(学习目标)1.掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.2.能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.3.能够理解勾股定理及逆定理的区别与联系,掌握它们的应用范围.(要点梳理)(高清课堂勾股定理逆定理知识要点)要点一、勾股定理的逆定理如果三角形的三条边长,满足,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如).(2)验证与是否具有相等关系.若,则△ABC是∠C=90°的直角三角形;若,则△ABC不是直角三角形.要点诠释:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.要点三、互逆命题如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.要点四、勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)(是自然数)是直角三角形的三条边长;(2)(是自然数)是直角三角形的三条边长;(3)(是自然数)是直角三角形的三条边长;(典型例题)类型一、原命题与逆命题1、写出下列命题的逆命题,并判断其真假:(1)同位角相等,两直角平行;(2)如果,那么;第1页共7页勾股定理的逆定理(3)等腰三角形两底角相等;(4)全等三角形的对应角相等.(5)对顶角相等.(6)线段垂直平分线上的点到线段的两个端点的距离相等.(思路点拨)写一个命题的逆命题的关键是分清它的题设和结论,然后将其交换位置,判断一个命题为真命题要经过证明,是假命题只需举出反例说明即可.(答案与解析)解:(1)逆命题是:两直线平行,同位角相等,它是真命题.(2)逆命题是:如果,那么,它是假命题.(3)逆命题是:有两个角相等的三角形是等腰三角形,它是真命题.(4)逆命题是:对应角相等的两个三角形全等,它是假命题.(5)逆命题是:如果两个角相等,那么这两个角是对顶角,它是假命题.(6)逆命题是:到线段两个端点距离相等的点一定在线段的垂直平分线上,它是真命题.(总结升华)写一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换位置,写出它的逆命题,可以借助“如果……那么”分清题设和结论.每一个命题都有逆命题,其中有真命题,也有假命题.举一反三:(变式)下列定理中,有逆定理的个数是()①有两边相等的三角形是等腰三角形;②若三角形三边满足,则该三角形是直角三角形;③全等三角形对应角相等;④若,则.A.1个B.2个C.3个D.4个(答案)B;提示:①的逆命题是:等腰三角形有两边相等,是真命题;②的逆命题是:若三角形是直角三角形,则三边满足(为斜边);③但对应角相等的两个三角形不一定全等;④若,与不一定相等,所以③、④的逆命题是假命题,不可能是定理.类型二、勾股定理逆定理的应用2、如图所示,四边形ABCD中,AB⊥AD,AB=2,AD=,CD=3,BC=5,求∠ADC的度数.(答案与解析)解: AB⊥AD,∴∠A=90°,在Rt△ABD中,.∴BD=4,∴,可知∠ADB=30°,在△BDC中,,,∴,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=30°+90°=120°.(总结升华)利用勾股定理的逆定理时,条件是三角形的三边长,结论是直角三角形,即由边的条件得到角的结论,所以在几何题中需要进行边角的转换时要联想勾股定理的逆定理.举一反三:(变式1)△ABC三边满足,则△ABC是()第2页共7页勾股定理的逆定理A.锐角三角形B.钝角三角形C....

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

勾股定理的逆定理

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部