1 数 值 传 热 学 近代发展及数值方法 建环:屈锐 2 0 1 1 年 1 0 月 5 日 2 数值传热学的发展史及数值方法 一、计算传热学的发展史 首先,计算传热学(Nu merical Heat Transfer)与计算流体动力学(Compu tational Flu id Dy namics)之间的关系密切,可以认为,他们的主要研究内容是一致的,因此,计算传热学的发展史很大程度上也就是计算流体动力学的发展史,但他们之间还有不少区别,流体动力学的一个主要研究内容是讨论无粘流动及跨、超音速流动数值计算中的一些特殊问题。应用计算机和数值方法求解流动及传热问题在全世界范围内逐渐形成规模而且得出有益的结果,大致始于60年代,故从60年代起,可以把数值传热学的发展过程分为3个阶段: 1、萌芽初创阶段 主要有以下重大事件: (1)交错网格的提出。初期的数值传热学出现的两大困难之一是,网格设置不当时会得出具有不合理的压力场的解。1965年美国科学家首先提出了交错网格的思想,有效解决了这一难题,促使了求解 NS方程的原始变量法的发展。 (2)对流项差分迎风格式的再次确认。初期发展遇到的另一难题是对流项采用中心差分时,对流速较高的情况的计算会得出振荡的解,1966年,科学家撰稿介绍了迎风格式在求解可压缩流体及非稳态层流流动中的作用,使流动与对流换热问题的求解建立在一个健壮的数值 3 方法上发展。 (3)世界上第一本介绍流体及计算传热学的杂志于1966年创刊。 (4)求解抛物型流动的 P-S 方法出现。由于受到计算机资源的限制,边界层类型问题的数值计算得到更多的关注,如何把有限个节点数目都充分利用起来成为了一个重要的问题。 (5)1969年 Sp aldin g 在英国帝国理工学院创建了 CHAM,旨在把他们研究组的成果推广应用到工业界。 (6)1972年 SIMPLE 算法问世。所谓分离式的求解方法应运而生,这个算法的基本思路是,在流场迭代求解的任何一个层次上,速度场都必须满足质量守恒方程,这一思想被以后的大量数值计算实例证明,是保证流场迭代计算收敛的一个十分重要的原则。 1974年美国学者提出了采用微分方程来生成适体坐标的方法。由于有限元法对不规则区域有很强的适应性,有限差分法与有限容积法则对复杂区域的适应能力很差,但对于流动问题的数值处理则要比有限元法容易得多。TTM 方法的提出,为有限差分法与有限容积法处理不规则边界问题提出了一条崭新的道路。 2、开始走向工业应用阶段 很多应用 P-S 方...