电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

数值计算_第3章解线性方程组的直接法

数值计算_第3章解线性方程组的直接法_第1页
1/55
数值计算_第3章解线性方程组的直接法_第2页
2/55
数值计算_第3章解线性方程组的直接法_第3页
3/55
第3 章 解线性方程组的直接法 在近代数学数值计算和工程应用中,求解线性方程组是重要的课题。例如,样条插值中形成的关系式,曲线拟合形成的法方程等,都落实到解一个元线性方程组,尤其是大型方程组的求解,即求线性方程组(3.1)的未知量的数值。 (3.1) 其中ai j,bi 为常数。上式可写成矩阵形式Ax = b,即 (3.2) 其中,为系数矩阵,为解向量,为常数向量。当detA=D0 时,由线性代数中的克莱姆法则,方程组 的解存在且惟一,且有 为系数矩阵的第列元素以代替的矩阵的行列式的值。克莱姆法则在建立线性方程组解的理论基础中功不可没,但是在实际计算中,我们难以承受它的计算量。例如,解一个100 阶的线性方程组,乘除法次数约为(101·100!·99),即使以每秒的运算速度,也需要近年的时间。在石油勘探、天气预报等问题中常常出现成百上千阶的方程组,也就产生了各种形式方程组数值解法的需求。研究大型方程组的解是目前计算数学中的一个重要方向和课题。 解方程组的方法可归纳为直接解法和迭代解法。从理论上来说,直接法经过有限次四则运算,假定每一步运算过程中没有舍入误差,那么,最后得到方程组的解就是精确解。但是,这只是理想化的假定,在计算过程中,完全杜绝舍入误差是不可能的,只能控制和约束由有限位算术运算带来的舍入误差的增长和危害,这样直接法得到的解也不一定是绝对精确的。 迭代法是将方程组的解看作某种极限过程的向量极限的值,像第 2 章中非线性方程求解一样,计算极限过程是用迭代过程完成的,只不过将迭代式中单变量换成向量而已。在用迭代算法时,我们不可能将极限过程算到底,只能将迭代进行有限多次,得到满足一定精度要求的方程组的近似解。 在数值计算历史上,直接解法和迭代解法交替生辉。一种解法的兴旺与计算机的硬件环境和问题规模是密切相关的。一般说来,对同等规模的线性方程组,直接法对计算机的要求高于迭代法。对于中等规模的线性方程组,由于直接法的准确性和可靠性高,一般都用直接法求解。对于高阶方程组和稀疏方程组(非零元素较少),一般用迭代法求解。 3 .1 消元法 3 .1 .1 三角形方程组的解 形如下面三种形式的线性方程组较容易求解。 对角形方程组 (3 .3 ) 设,对每一个方程,。 显然,求解n 阶对角方程的运算量为 。 下三角方程组 (3 .4 ) 按照方程组的顺序,从第一个方程至第个方程,逐个解出。 由方程,得。将的值代入到第二个方程...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

数值计算_第3章解线性方程组的直接法

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部