下载后可任意编辑基于小波分析的故障诊断算法前言:小波变换是一种新的变换分析方法,它继承和进展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间-频率”窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,因此,小波变换在许多领域都得到了成功的应用,特别是小波变换的离散数字算法已被广泛用于许多问题的变换讨论中。从此,小波变换越来越引起人们的重视,其应用领域来越来越广泛。在实际的信号处理过程中,尤其是对非平稳信号的处理中,信号在任一时刻附近的频域特征都很重要。如在故障诊断中,故障点(机械故障、控制系统故障、电力系统故障等)一般都对应于测试信号的突变点。对于这些时变信号进行分析,通常需要提取某一时间段(或瞬间)的频率信息或某一频率段所对应的时间信息。因此,需要寻求一种具有一定的时间和频率分辨率的基函数来分析时变信号。小波变换继承和进展了短时傅里叶变换的局部化思想,并且克服了其窗口大小和形状固定不变的缺点。它不但可以同时从时域和频域观测信号的局部特征,而且时间分辨率和频率分辨率都是可以变化的,是一种比较理想的信号处理方法。小波分析被广泛应用于信号处理、图像处理、语音识别、模式识别、数据压缩、故障诊断、量子物理等应用领域中。小波分析在故障诊断中应用进展 1) 基于小波信号分析的故障诊断方法 基于小波分析直接进行故障诊断是属于故障诊断方法中的信号处理法。这一方法的优点是可以回避被诊断对象的数学模型,这对于那些难以建立解析数学模型的诊断对象是非常有用的。具体可分为以下4种方法: ①利用小波变换检测信号突变的故障方法 连续小波变换能够通过多尺度分析提取信号的奇异点。基本原理是当信号在奇异点附近的Lipschitz指数α>0时,其连续小波变换的模极大值随尺度的增大而增大;当α<0时,则随尺度的增大而减小。噪声对应的Lipschitz指数远小于0,而信号边沿对应的Lipschitz指数大于或等于0。因此,利用小波变换可以区分噪声和信号边沿,有效地检测出强噪声背景下的信号边沿(奇变)。动态系统的故障通常会导致系统的观测信号发生奇异变化,可以直接利用小波变换检测观测信号的奇异点,从而实现对系统故障的检测。比如根据输油管泄漏造成的压力信号突变的特点,用小波变换检测这些突变点,实现输油管道的泄漏点诊断。②观测信号频率结构变化的故障诊断方法 小波多...