第二章 信息光学的数学基础 ◆引言 在这一节,我们将以简明的格式,全面地罗列傅里叶变换和卷积、相关及其主要性质,着重从光学眼光看待那些公式和数学定理,给出相应的光学显示或光学模拟,这有助于生动地理解、掌握傅里叶变换和卷积、相关,其意义就不仅仅限于光学领域了。 2.1 傅里叶变换 ◆傅里叶级数 首先.让我们回忆周期函数的傅里叶级数展开式, 这里,)( xg称为原函数,nG 称为博里叶系数或频谱值,它是傅里叶分量nfxie 2的幅值. ◆频谱的概念 频谱的概念,广义上讲就是求一个函数的傅立叶级数或一个函数的傅立叶变换。因此,傅立叶分析也称频谱分析。频谱分为振幅型频谱和相位型频谱。相位型频谱用的较少,通常提到的频谱大都指振幅型频谱。 为了更深刻的理解不同形式的频谱概念,以实例来进一步说明。对于光栅我们可以用透过率函数)( xg来描述,一维透射光栅的透过率函数是一矩形波函数。为了讨论问题方便, 设光栅狭缝总数N 无限大. )( xg是周期性函数 则: 上式表明,图中表示的矩形波可以分解为不同频率的简谐波,这些简谐波的频率为 ),()(mdxgxg),2,1,(m)52cos(52)32cos(32)2cos(221)(000xpxfxfxg 这里f 称为空间频率. 0f 是f 的基频.。周期性函数的频谱都是分立的谱,各谱线的频率为基频整数倍.在f=0 处有直流分量. 透过率函数也可用复数傅里叶级数表示: 再回到光栅装置.由光栅方程, 在近轴条件下 因此透镜后焦面上频率为 当单色光波入射到待分析的图象上时,通过夫琅和费衍射,一定空间频率的信息就被一定特定方向的平面衍射波输送出来. 这些衍射波在近场彼此交织在一起,到了远场它们彼此分开,从而达到分频的目的. 故傅立叶变换能达到分频的目的。 ◆傅里叶变换 在现实世界中,不存在严格意义下的周期函数,非周期变化是更为普遍的现象.从数学眼光看,非周期函数可看作周期d的函数.据此,可将上述傅里叶级数求和式过渡到积分表达式.结果如下, 上式(*******)称为傅里叶变换,下式******)称为博里叶逆变换.对于二维情形,傅里叶变换和逆变换的积分式为 简单地表示为 ,5,3,1,dddf xfinxfixfixfixpixfixfineGeeeeeexg 25252323222 )(51)(31)(121)(000000,sinnd),2,1,0(n,sin0nfdnfxfxnff0从光学眼光看),(yxg代表一波前函数,线性相因子)(2yfx...