小学六年级奥数 第 - 1 - 页 共 6 页 牛吃草问题讲义 牛吃草问题常用到四个基本公式,分别是: (1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数); (2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数; (3)吃的天数=原有草量÷(牛头数-草的生长速度); (4)牛头数=原有草量÷吃的天数+草的生长速度。 这四个公式是解决牛吃草问题的基础。一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。 牛吃草问题是经典的奥数题型之一,这里我只介绍一些比较浅显的牛吃草问题,给大家开拓一下思维,首先,先介绍一下这类问题的背景,大家看知识要点 特点:在“牛吃草”问题中,因为草每天都在生长,草的数量在不断变化,也就是说这类问题的工作总量是不固定的,一直在均匀变化。 典例评析 例1、有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天,那么它可供几头牛吃20天? 例2、由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少,如果某块草地上的草可供25头年吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天? 小学六年级奥数 第 - 2 - 页 共 6 页 例3、一片匀速生长的草地,可以供18投牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草两相当于3只羊每天的吃草量。请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完? 牧场上长满牧草,每天都匀速生长。这片牧场可供27头牛吃6天或23头牛吃9天。问可供21头牛吃几天? 【分析】这片牧场上的牧草的数量每天在变化。解题的关键应找到不变量——即原来的牧草数量。因为总草量可以分成两部分:原有的草与新长出的草。新长出的草虽然在变,但应注意到它是匀速生长的,因而这片牧场每天新长出飞草的数量也是不变的。 从这道题我们看到,草每天在长,牛每天在吃,都是在变化的,但是也有不变的,都是什么不变啊?草是以匀速生长的,也就是说每天长的草是不变的;,同样,每天牛吃草的量也是不变的,对吧?这就是我们解题的关键。这里因为未知数很多,我教大家一种巧妙的设未知数的方法,叫做设“1”法。我们设牛每天吃草的数量为1份,具体1份是多少我们不知道,也不用管它, 【思考1】一片草地,每天都匀速长出青草,如果可供24头牛吃...