1 1 同底数幂的乘法 教学任务分析 教学目标: 1、经历探索同底数幂乘法运算性质的过程,发展符号感和推理意识。 2、能用符号语言和文字语言表述同底数幂乘法的运算性质,会根据性质 计算同底数幂的乘法。 教学重点:同底数幂的乘法运算法则。 教学难点:同底数幂的乘法运算法则的灵活运用。 教学方法:创设情境—主体探究—应用提高。 教学过程设计 一、复习旧知 an 表示的意义是什么?其中a、n、an 分别叫做什么? an = a × a × a ×… a ( n 个 a 相乘) 25 表示什么? 10×10×10×10×10 可以写成什么形式? 10×10×10×10×10 = . 式子 103×102 的意义是什么? 答: 这个式子中的两个因式有何特点? 答: 二、探究新知 1、探究算法(让学生经历算一算,说一说) 让学生演算详细的计算过程,并引导学生说出每一步骤的计算依据。 103×102=(10×10×10)×(10×10)(乘方意义) =10×10×10×10×10 (乘法结合律) =105 (乘方意义) 2、寻找规律 请同学们先认真计算下面各题,观察下面各题左右两边,底数、指数有什么关系? ① 103×102= ② 23×22= ③ a3×a2= 2 提问学生回答,并以“你是如何快速得到答案的呢?”引导学生归纳规律:底数不变,指数相加。 3、定义法则 ①、你能根据规律猜出答案吗? 猜想:am·an=? (m、n 都是正整数) 师:口说无凭,写出计算过程,证明你的猜想是正确的。 am·an=(aa…a)·(aa…a)(乘方意义) m 个 a n 个 a = aa…a (m+n)个 a (乘法结合律) =am+n (乘方意义) 即:am·an= am+n (m、n 都是正整数) ②、让学生通过辨别运算的特点,用自己的语言归纳法则 A、am·an 是什么运算?——乘法运算 B、数am、an形式上有什么特点?——都是幂的形式 C、幂 am、an有何共同特点?——底数相同 D、所以am·an叫做同底数幂的乘法。 引出课题:这就是这节课咱们要学习的内容《同底数幂的乘法》 师:同学们觉得它的运算法则应该是什么? 生:同底数幂相乘,底数不变,指数相加。 教师强调:幂的底数必须相同,相乘时指数才能相加。 例如:43×45=43+5=48 4、知识应用 例 1、计算 (1) 32×35 (2)(-5)3×(-5)5 解: 师生共同分析:公式中的底数和指数可以代表一个数、字母、式子等。 练习一 3 计算:(抢答) (1) 105×106 (2) a7 ·a3 (3) x5 ·x5 (4) b5 · b...