全国高考考试大纲(文科数学) 本部分包括必考内容和选考内容两部分.必考内容为《课程标准》 的必修内容和选修系列1 的内容;选考内容为《课程标准》的选修系列4 的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”等 3 个专题。 (一) 必考内容与要求 1.集合 (1) 集合的含义与表示 ①了解集合的含义、元素与集合的属于关系。 ②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。 (2) 集合间的基本关系 ①理解集合之间包含与相等的含义,能识别给定集合的子集。 ②在具体情境中,了解全集与空集的含义。 (3) 集合的基本运算 ①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。 ②理解在给定集合中一个子集的补集的含义,会求给定子集 的补集。 ③能使用韦恩(Venn)图表达集合的关系及运算。 2.函数概念与基本初等函数 I (指数函数、对数函数、幂函数) (1) 函数 ①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。 ②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。 ③了解简单的分段函数,并能简单应用。 ④理解函数的单调性、最大值、最小值及其几何意义;结合具体函 数,了解函数奇偶性的含义。 ⑤会运用函数图像理解和研究函数的性质。 (2) 指数函数 ①了解指数函数模型的实际背景。 ②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。 ③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过 的特 殊 点 。 ④知 道 指数函数是 一类 重 要的函数模型。 (3) 对数函数 ①理解对数的概念及其运算性质,知 道 用换 底 公 式能将 一般 对数 转 化 成自然对数或常 用对数;了解对数在简化 运算中的作 用。 ②理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点。 ③知道对数函数是一类重要的函数模型。 ④了解指数函数与对数函数互为反函数(a>0,且 a≠1 )。 (4) 幂函数 ①了解幂函数的概念。 ②结合函数的图像,了解它们的变化情况。 (5) 函数与方程 ①结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。 ②根据具体函数的图像,能够用二分法求相应方程的近似解。 (6) 函数模型及其应用 ①了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对...