2010 年·暑假 初二数学·第9 讲· 教师版 page 1 of 16 板块 考试要求 A 级要求 B 级要求 C 级要求 全等三角形的性质及判定 会识别全等三角形 掌握全等三角形的概念、判定和性质,会用全等三角形的性质和判定解决简单问题 会运用全等三角形的性质和判定解决有关问题 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS):三边对应相等的两个三角形全等. (4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 奥数赛点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础. 知识点睛 中考要求 第九讲 全等三角形中的截长补短 2010 年·暑假 初二数学·第9 讲· 教师版 page 2 of 16 板块一、截长补短 【例1 】 (06 年北京中考题)已知ABC中,60A ,BD 、CE 分别平分ABC和. ACB,BD 、CE 交于点O ,试判断 BE 、CD 、 BC 的数量关系,并加以证明. DOECBA 4321FDOECBA 【解析】 BECDBC, 理由是:在BC 上截取BFBE,连结OF , 利用SAS证得BEO≌BFO,∴12 , 60A ,∴1901202BOCA ,∴120DOE, ∴180ADOE ,∴180AEOADO ,∴13180 , 24180 ...