材料分析技术在集成电路制程中的应用 谢咏芬、何快容 11-1 简介 在现今的微电子材料研究中,各式各样的分析仪器通常被用来协助技术开发 (Technology Developement)、制程监控 (Process Monitoring)、故障分析 (Failure Analysis)、和进行产品功能异常侦错 (Products Debug) 等研究 (请见图 11-1-1);本章将简要叙述各种分析仪器的工作原理、分辨率、和侦测极限,并以典型的实例来说明这些分析技术在半导体组件制造中的应用。 图 11-1-1 有关微电子材料的分析技术可以概分为结构分析(物性)与成份分析(化性)两大类,常见的仪器计有光学显微镜 (Optical Microscope, OM),扫描式电子显微镜 (Scanning Electron Microscope, SEM),X光能谱分析仪 (X-ray Spectrometry),穿透式电子显微镜 (Transmission Electron Microscope, TEM),聚焦式离子束显微镜 (Focused Ion beam, FIB),X光绕射分析仪 (X-ray Diffractometer, XRD),扫描式欧杰电子显微镜 (Scanning Auger Microscope, SAM),二次离子质谱仪 (Secondary ion Mass Spectrometry, SIMS),展阻量测分析仪 (Spreading Resistance Profiling, SRP),拉塞福背向散射质谱仪 (Rutherford Backscattering Spectrometry, RBS),和全反射式 X-光萤光分析仪 (Total Reflection X-ray Fluorescence, TXRF)等十几种之多,请见图 11-1-2。 目前在IC工业中,无论是生产线或一般的分析实验室中,几乎随处可见到光学显微镜,然而对各类的 IC 组件结构观察或日常的制程监控,最普遍的分析工具仍是扫描式电子显微镜;近几年来,由于组件尺寸微小化 (Device Miniaturization) 的趋势已步入深次微米 (Deep Sub-Micron) 的世代,许多材料微细结构的观察都需要高分辨率 (Resolution)的影像品质,穿透式电子显微镜的重要度自然日益提高;但是在进行组件故障或制程异常分析时,往往需要定点观察或切割局部横截面结构,以便确认异常发生的时机或探讨故障的真因,因此聚焦式离子束显微镜 (Focused Ion Beam, FIB) 应运而生,这项分析技术近五年来蓬勃发展,提供了定点切割技术 (Precisional Cutting)、自动导航定位系统 (Auto Navigation System)、和立即蒸镀和蚀刻 (In-Situ Deposition and Etching) 等功能,大大的满足了各类定点观察的需求,同时也带来了其它像线路修补 (Circuit Repair)、布局验证 (Layout Verification)...