电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

概率论与数理统计(英文)第四章

概率论与数理统计(英文)第四章_第1页
1/19
概率论与数理统计(英文)第四章_第2页
2/19
概率论与数理统计(英文)第四章_第3页
3/19
46 4. Continuous Random Variable 连续型随机变量 Continuous random variables appear when we deal will quantities that are measured on a continuous scale. For instance, when we measure the speed of a car, the amount of alcohol in a person's blood, the tensile strength of new alloy. We shall learn how to determine and work with probabilities relating to continuous random variables in this chapter. We shall introduce to the concept of the probability density function. 4.1 Continuous Random Variable 1. Definition Definition 4.1.1 A function f(x ) defined on (, ) is called a probability density function (概率密度函数)if: (i) ( )0 for any fxxR; (ii) f(x ) is intergrable (可积的) on (, ) and ( )1fx dx. Definition 4.1.2 Let f(x ) be a probability density function. If X is a random variable having distribution function ( )()( )xF xP Xxf t dt , (4.1.1) then X is called a continuous random variable having density function f(x ). In this case, 2112()( )xxP xXxf t dt . (4.1.2) 2. 几何意义 ( )()((,) |, 0())( )xF xP XxPX YXxYfXf t dt  47 2112()( )xxP xXxf t dt  3. Note In most applications, f(x ) is either continuous or piecewise continuous having at most finitely many discontinuities. Note 1 For a random variable X, we have a distribution function. If X is discrete, it has a probability distribution. If X is continuous, it has a probability density function. Note 2 Let X be a continuous random variable, then for any real number x , ()0P Xx. xxdxxfxXP)()(0 0)()(0lim0xxdxxfxXP ()()()()P aXbP aXbP aXbP aXb 4. Example Example 4.1.2 Find k so that the following can serve as the pro...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

概率论与数理统计(英文)第四章

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部