1 离散型随机变量 定义1 :随着试验结果变化而变化的变量称为随机变量,随机变量常用字母 X , Y, , ,„ 表示. 思考2 :随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域. 例如,在含有10 件次品的100 件产品中,任意抽取4 件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出 0 件次品” , {X =4}表示“抽出 4 件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢? 定义2 :所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,„,10;某网页在24 小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,„. 连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 如某林场树木最高达30 米,则林场树木的高度 是一个随机变量,它可以取(0,30]内的一切值 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币, =0,表示正面向上, =1,表示反面向上 (2)若 是随机变量,baba,, 是常数,则 也是随机变量 例1. 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果 (1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出 3只球,被取出的球的最大号码数ξ ; (2)某单位的某部电话在单位时间内收到的呼叫次数η 例2. 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ ,试问:“ξ > 4”表示的试验结果是什么? 、课堂练习: 1.①某寻呼台一小时...