五年级数学下册知识点归纳总结一、图形的变换图形变换的基本方式是平移、对称和旋转。1、轴对称: 假如一种图形沿着一条直线对折后两部分完全重叠,这样的图形叫做轴对称图形, 这条直线叫做对称轴。(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有 1 条对称轴,等边三角形有 3 条对称轴,长方形有 2 条对称轴,正方形有 4 条对称轴,等腰梯形有 1 条对称轴,任意梯形和平行四边形不是轴对称图形。(2)圆有无数条对称轴。(3)对称点到对称轴的距离相等。(4)轴对称图形的特征和性质:① 对应点到对称轴的距离相等;② 对应点的连线与对称轴垂直;③ 对称轴两边的图形大小、形状完全相似。3、对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。2、旋转:在平面内,一种图形绕着一种顶点旋转一定的角度得到另一种图形的变化较做旋转,定点 O 叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转三要素;旋转中心、旋转角度和旋转方向。(3)长方形绕中点旋转 180 度与本来重叠,正方形绕中点旋转 90 度与本来重叠。等边三角形绕中点旋转 120 度与本来重叠。旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有变化;(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点。3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数二、因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。 整数与自然数的关系:整数包括自然数。 2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。例:12 是 6 的倍数,6 是 12 的因数。(1)数 a 能被 b 整除,那么 a 就是 b 的倍数,b 就是 a 的因数。因数和倍数是互相依存的,不能单独存在。(2)一种数的因数的个数是有限的,其中最小的因数是 1,最大的因数是它自身。 一种数的因数的求法:成对地按次序找。(3)一种数的倍数的个数是无限的,最小的倍数是它自身。 一种数的倍数的求法:依次乘以自然数。(4)2、3、5 的倍数特征1) 个位上是 0,2,4,6,8 的数都是 2 的倍数。2)一种数各位...