速算巧算速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。这一章我们学习加、减、乘、除法的巧算方法,这些方法主要根据加、减、乘、除法的运算定律和运算性质,通过对算式适当变形从而使计算简便。在巧算方法里,蕴含着一种重要的解决问题的策略。转化问题法即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或减整从而变成一个易于算出结果的算式。【例题讲解及思维拓展训练题】例1:计算9+99+999+9999思维点睛:这四个加数分别接近10、100、1000、10000。在计算这类题目时,常使用减整法,例如将99转化为100-1。这是小学数学计算中常用的一种技巧。9+99+999+9999=(10-1)+(100-1)+(1000-1)+(10000-1)=10+100+1000+10000-4=11106思维拓展训练一:1.计算99999+9999+999+99+92.计算9+98+996+99973.计算1999+2998+396+4974.计算198+297+396+4955.计算1998+2997+4995+59946.计算19998+39996+49995+69996.例2:计算489+487+483+485+484+486+488思维点睛:认真观察每个加数,发现它们都和整数490接近,所以选490为基准数489+487+483+485+484+486+488=490×7-1-3-7-5-6-4-2=3430-28=3402思维拓展训练二:1.计算50+52+53+54+512.计算262+266+270+268+2643.计算89+94+92+95+93+94+88+96+874.计算381+378+382+383+3795.计算1032+1028+1033+1029+1031+10306.计算2451+2452+2446+2453.例3:计算下面各题。(1)632-156-232(2)128+186+72-86思维点睛:在一个没有括号的算式中,如果只有第一级运算,计算时可以根据运算定律和性质调换加数或减数的位置。(1)632-156-232(2)128+186+72-86=632-232-156=(128+72)+(186-86)=400-156=244=128+72+186-86=200+100=300思维拓展训练三:计算下面各题1.1208-569-2082.283+69-1833.132-85+684.2318+625-1318+375例4:计算下面各题。1.248+(152-127)2.324-(124-97)3.283+(358-183)思维点睛:在计算有括号的加减混合运算时,有时为了使计算简便可以去括号,如果括号前面是“+”号,去括号时,括号内的符号不变;如果括号前面是“-”号,去括号时,括号内的加号就要变成减号,减号就要变成加号。我们可以把上面的计算方法概括为:括号前面是加号,去掉括号不变号;括号前面是减号,去掉括号要变号。1、248+(152-127)2、324-(124-97)3、283+(358-183)=283+358-183=324-124+97=248+152-127=283-183+358=200+97=400-127=100+358=458=297=273思维拓展训练四:计算下面各题1、348+(252-166)2、629+(320-129)3、462-(262-129)4、662-(315-238)5、5623-(623-289)+452-(352-211)6、736+678+2386-(336+278)-186例5:计算下面各题。(1)286+879-679(2)812-593+193思维点睛:在计算没有括号的加减法混合运算式题时,有时可以根据题目的特点,采用添括号的方法使计算简便,与前面去括号的方法类似,我们可以把这种方法概括为:括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号。(1)286+879-679(2)812-593+193=812-(593-193)=286+(879-679)=812-400=286+200=412=868思维拓展训练五:计算下面各题。1.368+1859-8592.582+393-2933.632-385+2854.2756-2748+1748+2445.612-375+275+(388+286)6.756+1478+346-(256+278)-246例6:计算325÷25思维点睛:在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变。利用这一性质,可以使这道计算题简便。325÷25=(325×4)÷(25×4)=1300÷100=13思维拓展训练六:计算下面各题。1、450÷252、525÷253、3500÷1254、10000÷6255、49500÷9006、9000÷225例7:计算25×125×4×8思维点睛:经过仔细观察可以发现:在这道连乘算式中,如果先把25与4相乘,可以得到100;同时把125与8相乘,可以得到1000;再把100与1000相乘就简便了。这就启发我们运用乘法交换律和结合律使计算简便。25×125×4×8=(25×4)×(125×8)=100×1000=100000思维拓展训练七:计算下面各题。125×15×8×425×2425×5×64×125125×25×327...