2008 年高考谈关于复数的考查题型河北省井陉一中 梁彦庭 考试内容:复数的概念、复数的加法和减法、复数的乘法和除法、数系的扩充。考试要求:(1)理解复数的有关概念,掌握复数的代数表示和几何意义。(2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算。在高考中,这一部分一般只会出一个小题,不会太难,只要搞懂最基础的知识就可以了,下面通过今年的高考题来说明:一.考查复数的有关概念:1.若 , ,且为纯虚数,则实数 a 的值为 .分析:只需把化成虚部和实部的形式,让实部为零且虚部不为零即可。2 若,其中、, 使虚数单位,则(D)A.0 B.2 C. D.5分析:考查两个复数相等的充要条件,把等号两边化成实部和虚部的形式,然后让实部等于实部,虚部等于虚部列一个方程组求出、,即可。3. 复数的共轭复数是( B )A.B.C.D.4. 若复数(a∈R,i 为虚数单位位)是纯虚数,则实数 a 的值为 ( C )A.-2B.4 C.-6 D.6 二.考查复数的基本运算:1. (湖北卷)( C )A.B.C.D.2. (湖南卷)复数 z=i+i2+i3+i4的值是 (B) A.-1 B.0 C.1 D.I 分析:考查复数的周期性。3. ( A )A.B.-C.D.- 分析:先化简底数,然后根据复数的周期性进行运算。4. 设复数:为实数,则 x=( A)A.-2B.-1C.1D.2 5.在复数范围内解方程(i 为虚数单位)用心 爱心 专心 [解]原方程化简为, 设 z=x+yi(x、y∈R),代入上述方程得 x2+y2+2xi=1-i, ∴x2+y2=1 且 2x=-1,解得 x=-且 y=±, ∴原方程的解是 z=-±i.6. 设、、、,若为实数,则 ( A)(A) (B) (C) (D) 7. 已知复数.8. ( D )(A) (B) (C)1 (D)三.考查复数的几何意义:1. 复数在复平面内,z 所对应的点在(B )A.第一象限B.第二象限C.第三象限D.第四象限 分析:把复数化成实部和虚部的形式,然后通过实部(点的横坐标)和虚部(点的纵坐标)的符号判定复数对应点所在的象限。2. 在复平面内,复数+(1+i)2对应的点位于 ( B )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限用心 爱心 专心