正弦、余弦函数的图象与性质(第一课时)(说课稿)各位老师,大家好!我说课的课题是《正、余弦函数的图象与性质》,共分为五个环节:一、教材分析二、目标分析三、教材分析四、学法分析五、流程分析。—、教材分析1、教材的地位与作用《正弦函数的图象与性质》是高中《数学》第一册(下)(人教试验修订本)第四章第八节的内容,其主要内容是正弦、余弦函数的图象与性质。过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学过三角函数线,在此基础上来学习正弦、余弦函数的图象与性质,为今后正切函数的图象与性质、函数y=Asin(wx+Φ)的图象的研究打好基础。因此,本节的学习有着极其重要的地位。本节共分三个课时,本课为第一课时,主要是利用正弦线画出y=sinx,xe[0,2π]的图象,考察图象的特点,介绍“五点作图法”,并在此基础上由诱导公式画出余弦函数的图象,并会用“五点作图法”画出正弦、余弦函数的简图.2、教学重点和难点教学重点:用“五点作图法”画长度为一个周期的闭区间上的正余弦函数图象。教学难点:利用单位圆画正弦曲线及用诱导公式画出余弦曲线。二、目标分析教学目标是教学的出发点和归宿,《数学教学大纲》除了要求使学生掌握必要的数学基础知识外,还要求对学生进行能力培养和情感教育。根据《高中数学教学大纲》的要求和教学内容的结构特征,依据学生学习时有简单到抽象、由表象到内涵的认知规律和素质教育对学习注重过程与方法的要求,结合学生的实际水平,制定本节课的教学目标如下。1、知识目标①正弦函数的图象②余弦函数的图象2、能力目标(1)会用单位圆中的正弦线画出正弦函数图象;(2)掌握正余弦函数图象的“五点作图法”;(3)掌握与正弦函数有关的简单图象平移变换和对称变换;1(4)培养观察能力、分析能力、归纳能力和表达能力等;(5)培养数形结合和化归转化的数学思想方法。3、德育目标(1)渗透由抽象到具体的思想,使学生理解动与静的辩证关系,培养辩证唯物主义观点;(2)培养学生勇于探索、勤于思考的精神;(3)培养学生合作学习和数学交流的能力;(4)使学生懂得数学是源于生活,服务于生活的数学特点。三、教法分析根据上述教材分析和目标分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化课堂教学改革,确定本课主要的教法为:1、计算机辅助教学借助多媒体教学手段引导学生理解利用单位圆中的正弦线画出正弦函数的图象,使问题变得直观,易于突破难点;利用多媒体向学生展示优美的函数图象,给人以美的享受。2、讨论式教学通过观察“正弦函数的几何作图法”课件的演示,让学生分组(四人一组)讨论、交流、总结,由小组成员代表小组发表意见(不同层次的组员回答,教师给予评价不同),说出正弦和余弦函数在x[0,2π]一个周期内图象中起着关键作用的点。3、讲议结合教学教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议。4、分层教学提问分层、评价分层、作业分层,注意面向全体学生,充分调动不同层次学生的积极性。四、学法分析引导学生认真观察“正弦函数的几何作图法”教学课件的演示,指导学生进行分组讨论交流,促进学生知识体系的建构和数学思想方法的形成,注意面向全体学生,培养学生勇于探索、勤于思考的精神,提高学生合作学习和数学交流的能力。2五、教学程序教学过程设计意图(一)新课引入实物演示:“装满细沙的漏斗在做单摆运动时,沙子落在与单摆运动方向垂直运动的木板上的轨迹”思考:1、该曲线是何曲线?2、你有办法画出该曲线的图象吗?(二)新课1、课件演示:“正弦函数图象的几何作图法”2、教师引导:在直角坐标系的x轴上任意取一点O1,以O1为圆心作单位圆,从圆O1与x轴的交点A起把圆O1分成12等份(份数宜取6的倍数,份数越多,画出的图象越精确),过圆O1π上的各分点作x轴的垂线,可以得到对应于0、6、ππ3、2、……、2π等角的正弦线,相应地,再把x轴上从0到2π这一段(2π≈6.28)分成12等份,把角x的正弦线向右平移,使它的起点与x轴上的点x重合,再用光滑的曲线把这些正弦线的终点连结起来,就得到了函数y=sinx,xe[0,2π]的...