第十四课时 第二章平面向量小结与复习课(一)一、教学目标:1. 理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。2. 了解平面向量基本定理.3. 向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。4. 了解向量形式的三角形不等式:|| |-| |≤| ± |≤| |+||(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(| | +| | )=| - | +|+ | .5. 了解实数与向量的乘法(即数乘的意义):6. 向量的坐标概念和坐标表示法;7. 向量的坐标运算(加.减.实数和向量的乘法.数量积);8. 数量积(点乘或内积)的概念, ·=| || |cos=x x +y y 注意区别“实数与向量的乘法;向量与向量的乘法”。二、教学过程[第一部分:知识归纳]1.知识结构向量的应用向量在物理中的应用速度向量力向量向量在几何中的应用向量在解析几何中的应用向量在平面几何中的应用距离公式夹角公式向量长度公式基本公式两向量平行与垂直的条件用坐标表示向量的运算向量的内积向量的加法、减法数乘向量向量地运算平面向量2.重要公式、定理①.平面向量基本定理:如果, 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 λ1,λ2使 =λ1+λ2.②. 向量共线的两种判定方法: ∥ ()③. a = (x, y) |a|2 = x2 + y2 |a| =1 ④.若 A = (x1, y1),B = (x2, y2),则=221221)()(yyxx ⑤.cos =222221212121yxyxyyxx ⑥.ab a•b = 0 即 x1x2 + y1y2 = 0(注意与向量共线的坐标表示)3.学习本章应注意的问题及高考展望 ①.在平面向量的应用中,用平面向量解决平面几何问题时,首先将几何问题中的几何元素和几何关系用向量表示,然后选择适当的基底向量,将相关向量表示为基向量的线性组合,把问题转化为基向量的运算问题,最后将运算的结果再还原为几何关系,注意用向量的语言和方法来表述和解决物理问题。②.向量是数形结合的载体,在本章的学习中,一方面通过数形结合来研究向量的概念和运算;另一方面,我们又以向量为工具,运用数形结合的思想解决数学问题和物理的相关问题.同时向量的坐标表示为我们用代数方法研究几何问题提供了可能,丰富了我们研究问题的范围和手段。③.以选择、填空题型考查本章的基本概念和性质,这类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题。④.以解答...