§1.3 辗转相除法与更相减损术珠海市斗门和风中学 邝国均【教学目标】:(1) 理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。 (2) 基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。【教学重点】理解辗转相除法与更相减损术求最大公约数的方法。【教学难点】把辗转相除法与更相减损术的方法转换成程序框图与程序语言。【学法与教学用具】:学法:比较辗转相除法与更相减损术求最大公约数在算法上的区别,并从程序的学习中体会数学的严谨,领会数学算法计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。教学用具:计算机,TI-voyage200 图形计算器【教学过程】提出问题:在小学,我们已经学过求最大公约数的知识,如口算求出 12 与 20 的公约数。分析:我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求 8251 与 6105 的最大公约数?这就是我们这一堂课所要探讨的内容。辗转相除法例 1 求两个正数 8251 和 6105 的最大公约数。分析:8251 与 6105 两数都比较大,而且没有明显的公约数,可以把它们都变小一点,根据已有的知识即可求出最大公约数8251=6105×1+2146显然 8251 的最大公约数也必是 2146 的约数,同样 6105 与 2146 的公约数也必是 8251 的约数,所以 8251 与 6105 的最大公约数也是 6105 与 2146 的最大公约数。6105=2146×2+18132146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0则 37 为 8251 与 6105 的最大公约数。以上我们求最大公约数的方法就是辗转相除法。也叫欧几里德算法,它是由欧几里德在公元前 300 年左右首先提出的。利用辗转相除法求最大公约数的步骤如下:(1):用较大的数 m 除以较小的数 n 得到一个商和一个余数;(2):若=0,则 n 为 m,n 的最大公约数;若≠0,则用除数 n 除以余数得到一个商和一个余数;(3):若=0,则为 m,n 的最大公约数;若≠0,则用除数除以余数得到一个商和一个余数;……依次计算直至=0,此时所得到的即为所求的最大公约数。其程序框图见课本其程序语言(BASIC)如下:INPUT “m=”;mINPUT “n=”;nIF m MOD n=nn=xEND IFr=m MOD nWHILE r<>0 r=m MOD nm=nn=rWENDPRINT mEND学生利用 TI-voyage200 图形...