空间向量及其运算和空间位置关系 ( 理 ) [知识能否忆起]一、空间向量及其有关概念语言描述共线向量(平行向量)表示空间向量的有向线段所在的直线平行或重合.共面向量平行于同一平面的向量.共线向量定理对空间任意两个向量 a,b(b≠0),a∥b⇔存在 λ∈R,使 a=λb.共面向量定理若两个向量 a,b 不共线,则向量 p 与向量 a,b 共面⇔存在唯一的有序实数对(x,y),使 p=xa+yb.空间向量基本定理(1)定理:如果三个向量 a、b、c 不共面,那么对空间任一向量 p,存在有序实数组{x,y,z}使得 p=x a+y b+z c.(2)推论:设 O、A、B、C 是不共面的四点,则对空间一点 P 都存在唯一的三个有序实数 x、y、z 使=x+y+z且 x+y+z=1.二、数量积及坐标运算1.两个向量的数量积(1)a·b=|a||b|cos〈a,b〉;(2)a⊥b⇔a·b=0(a,b 为非零向量);(3)|a|2=a2,|a|=.2.向量的坐标运算a=(a1,a2,a3),b=(b1,b2,b3)向量和a+b=( a 1+ b 1, a 2+ b 2, a 3+ b 3)向量差a-b=( a 1- b 1, a 2- b 2, a 3- b 3)数量积a·b=a1b1+ a 2b2+ a 3b3共线a∥b⇒a1= λb 1, a 2= λb 2, a 3= λb 3(λ∈R)垂直a⊥b⇔a1b1+ a 2b2+ a 3b3= 0 夹角公式cos〈a,b〉=三、平面的法向量(1)所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量有无数多个,它们是共线向量.(2)在空间中,给定一个点 A 和一个向量 a,那么以向量 a 为法向量且经过点 A 的平面是唯一的.[小题能否全取]1.(课本习题改编)已知 a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2)则下列结论正确的是( )A.a∥c,b∥c B.a∥b,a⊥cC.a∥c,a⊥b D.以上都不对解析:选 C c=(-4,-6,2)=2a,∴a∥c.又 a·b=0,故 a⊥b.2.(2012·济宁一模)若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是( )A.{a,a+b,a-b} B.{b,a+b,a-b}C.{c,a+b,a-b} D.{a+b,a-b,a+2b}解析:选 C 若 c、a+b、a-b 共面, 则 c=λ(a+b)+m(a-b)=(λ+m)a+(λ-m)b,则 a、b、c 为共面向量,与{a,b,c}为空间向量的一组基底矛盾,故 c,a+b,a-b 可构成空间向量的一组基底.3.(教材习题改编)下列命题:① 若 A、B、C、D 是空间任意四点,则有+++=0;② 若=x+y,则 M、P、A、B 共面;③ 若 p=x a+...