电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

加速度的瞬时变化问题

加速度的瞬时变化问题_第1页
1/4
加速度的瞬时变化问题_第2页
2/4
加速度的瞬时变化问题_第3页
3/4
加速度的瞬时变化问题 例.(2001 年上海)如图 4(甲)所示,一质量为 m 的物体系于长度分别为 l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为 θ,l2水平拉直,物体处于平衡状态.现将 l2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解:设 l1线上拉力为 T1,l2线上拉力为 T2,重力为 mg,物体在三力作用下保持平衡:T1cosθ=mg,T1sinθ=T2,T2=mgtanθ剪断线的瞬间,T2突然消失,物体即在 T2反方向获得加速度.因为 mgtanθ=ma,所以加速度 a=gtanθ,方向于 T2反方向.你认为这个结果正确吗?请对该解法作出评价并说明理由. (2)若将如图 4(甲)中的细线 l1改为长度相同、质量不计的轻弹簧,如图 4(乙)所示,其他条件不变,求解的步骤与(1)完全相同,即 a=gtanθ,你认为这个结果正确吗?请说明理由.错误剖析:本题考查的是运用牛顿定律分析瞬时力和瞬时加速度,要求考生能对“弹性绳”和“刚性绳”两种理想模型的性质做出正确的判断,由于不能伸长的绳上力的改变不需要绳的长度改变,因而其弹力可以在瞬间变化,而弹性绳弹力的改变必须通过改变绳的长度才能实现,因而其弹力不能在瞬间变化.出现错误的考生一般是没有注意这两种模型的区别,将两种情况相混淆.思路点拨:水平细线剪断瞬间拉力突变为零,图甲中 OA 绳拉力由 T 突变为 T',但是图乙中 OB 弹簧要发生形变需要一定时间,弹力不能突变。 (1)对 A 球受力分析,如图 5(a),剪断水平细线后,球 A 将做圆周运动,剪断瞬间,小球的加速度a1方向沿圆周的切线方向。 Fmgmaag111sinsin, (2)水平细线剪断瞬间,B 球受重力 G 和弹簧弹力T2不变,如图 5(b)所示,则1 Fm gagB22tantan,正确解答解:(1)错.因为 l2被剪断的瞬间,l1上的张力大小发生了变化.(2)对.因为 l2被剪断的瞬间,弹簧 l1的长度未及发生变化,T1大小和方向都不变.小结:(1)牛顿第二定律是力的瞬时作用规律,加速度和力同时产生、同时变化、同时消失。分析物体在某一时刻的瞬时加速度,关键是分析该瞬时前后的受力情况及其变化。 (2)明确两种基本模型的特点: A. 轻绳的形变可瞬时产生或恢复,故绳的弹力可以瞬时突变。 B. 轻弹簧(或橡皮绳)在两端均联有物体时,形变恢复需较长时间,其弹力的大小与方向均不能突变。针对训练:1、一轻弹簧上端固定,下端挂一重物,平衡时,弹簧早长了 4c...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

加速度的瞬时变化问题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部