第 2 讲 三角变换与解三角形 【高考考情解读】 1.从近几年的考情来看,对于三角恒等变换,高考命题以公式的基本运用、计算为主,其中与角所在范围、三角函数的性质、三角形等知识结合为命题的热点;解三角形与其他知识以及生活中的实际问题联系紧密,有利于考查考生的各种能力,因而成了高考命题的一大热点.2.分析近年考情可知,命题一般为 1~2 题,其中,填空题多为低档题,解答题则一般为与其他知识(尤其是三角函数、向量)交汇的综合题或实际应用题,难度中等.1. 两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β.(2)cos(α±β)=cos αcos β∓sin αsin β.(3)tan(α±β)=.2. 二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α.(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.(3)tan 2α=.3. 三角恒等式的证明方法(1)从等式的一边推导变形到另一边,一般是化繁为简.(2)等式的两边同时变形为同一个式子.(3)将式子变形后再证明.4. 正弦定理===2R(2R 为△ABC 外接圆的直径).变形:a=2Rsin A,b=2Rsin B,c=2Rsin C.sin A=,sin B=,sin C=.a∶b∶c=sin A∶sin B∶sin C.5. 余弦定理a2=b2+c2-2bccos A,b2=a2+c2-2accos B,c2=a2+b2-2abcos C.推论:cos A=,cos B=,cos C=.变形:b2+c2-a2=2bccos A,a2+c2-b2=2accos B,a2+b2-c2=2abcos C.6. 面积公式S△ABC=bcsin A=acsin B=absin C.7. 解三角形(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一.(3)已知两边及其夹角,利用余弦定理求解.(4)已知三边,利用余弦定理求解.考点一 三角变换例 1 (2013·广东)已知函数 f(x)=cos,x∈R.(1)求 f 的值;1(2)若 cos θ=,θ∈,求 f.解 (1)f=cos=cos=cos =1.(2)f=cos=cos=cos 2θ-sin 2θ,又 cos θ=,θ∈,∴sin θ=-,∴sin 2θ=2sin θcos θ=-,cos 2θ=2cos2 θ-1=-,∴f=cos 2θ-sin 2θ=-+=. 当已知条件中的角与所求角不同时,需要通过“拆”、“配”等方法实现角的转化,一般是寻求它们的和、差、倍、半关系,再通过三角变换得出所要求的结果.化简常用技巧:① 常值代换:特别是“1”的代换,1=sin2θ+cos2θ=tan 45°等;② 项的分拆与角的配凑:如 sin2α+2c...