课时分层作业三十四数列的综合应用一、选择题(每小题5分,共25分)1.已知a,b,c是三个不同的实数,若a,b,c成等差数列,且b,a,c成等比数列,则a∶b∶c为()A.2∶1∶4B.(-2)∶1∶4C.1∶2∶4D.1∶(-2)∶4【解析】选B.由a,b,c成等差数列,设a=m-d,b=m,c=m+d,d≠0,因为b,a,c成等比数列,所以a2=bc,即(m-d)2=m(m+d),化简,得d=3m,则a=-2m,b=m,c=4m,所以a∶b∶c=(-2)∶1∶4.2.设y=f(x)是一次函数,若f(0)=1,且f(1),f(4),f(13)成等比数列,则f(2)+f(4)+…+f(2n)等于()A.n(2n+3)B.n(n+4)C.2n(2n+3)D.2n(n+4)【解析】选A.由题意可设f(x)=kx+1(k≠0),则(4k+1)2=(k+1)×(13k+1),解得k=2,f(2)+f(4)+…+f(2n)=(2×2+1)+(2×4+1)+…+(2×2n+1)=n(2n+3).3.若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于()A.6B.7C.8D.9【解析】选D.由题可知a,b是x2-px+q=0的两根,所以a+b=p>0,ab=q>0,故a,b均为正数.因为a,b,-2适当排序后成等比数列,所以-2是a,b的等比中项,所以ab=4,所以q=4.又a,b,-2适当排序后成等差数列,所以-2是第一项或第三项,不妨设a
0,所以a=1,此时b=4,所以p=a+b=5,所以p+q=9.当b0且q≠1),由a3=a2+a1,得q2-q-1=0,解得q=,而===.答案:5.(2018·宜宾模拟)数列{an}的通项an=n(cos2-sin2),其前n项和为Sn,则S40为()A.10B.15C.20D.25【解析】选C.由题意得,an=n(cos2-sin2)=ncos,则a1=0,a2=-2,a3=0,a4=4,a5=0,a6=-6,a7=0,…,于是a2n-1=0,a2n=(-1)n·2n,则S40=(a1+a3+…+a39)+(a2+a4+a6+…+a40)=-2+4-…+40=20.二、填空题(每小题5分,共15分)6.对于每一个正整数n,设曲线y=xn+2在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=log2xn,则a1+a2+a3+…+a62=________.【解析】因为y′=(n+2)xn+1,当x=1时,y′=n+2,所以曲线y=xn+2在点(1,1)处的切线方程为y=(n+2)x-(n+1),令y=0,得xn=.所以an=log2xn=log2.所以a1+a2+a3+…+a62=log2=log2=-5.答案:-57.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于________.【解析】每天植树的棵数构成以2为首项,2为公比的等比数列,其前n项和Sn===2n+1-2.由2n+1-2≥100,得2n+1≥102,由于26=64,27=128,则n+1≥7,即n≥6.答案:68.(2018·襄阳模拟)用g(n)表示自然数n的所有因数中最大的那个奇数,例如:9的因数有1,3,9,则g(9)=9,10的因数有1,2,5,10,g(10)=5,那么g(1)+g(2)+…+g(2n-1)=________.【解析】由g(n)的定义易知g(n)=g(2n),且若n为奇数则g(n)=n,令f(n)=g(1)+g(2)+g(3)+…+g(2n-1)则f(n+1)=g(1)+g(2)+g(3)+…g(-1)=1+3+…+(-1)+g(2)+g(4)+…+g(-2)=+g(1)+g(2)+…+g(2n-1)=4n+f(n),即f(n+1)-f(n)=4n,据此可得:f(1)=1,f(2)-f(1)=4,f(3)-f(2)=8,…,f(n)-f(n-1)=4n-1,以上各式相加可得:f(n)==.答案:三、解答题(每小题10分,共20分)9.(2018·南宁模拟)某体育场一角的看台共有20排,且此看台的座位是这样排列的:第一排有2个座位,从第二排起每一排比前一排多1个座位,记an表示第n排的座位数.(1)确定此看台共有多少个座位.(2)求数列的前20项和S20.【解析】(1)由题可知数列{an}是首项为2,公差为1的等差数列,所以an=2+n-1=n+1(1≤n≤20).所以此看台的...