江苏省响水中学 2014 届高三数学文科一轮复习教学案第 19 课时:等差等比数列的应用【知识点回顾】1. 等差数列的性质:2. 等比数列的性质:难点疑点:①以 n 为自变量的函数特征:非常数列的等差数列的通项公式是关于正整数 n 的一次函数,其前 n 项的和是关于自然数 n 的二次函数,在分析等差数列的相关问题时要能从函数观点,灵活给出 等差数列的通项公式和前 n 项的和的公式.② 生成数列、子数列:在解决由等差数列和等比数列生成的一些新数列时,应先判断数列类型.【基础知识】1.三个数成等差数列,成等比数列,则=_______________.2.已知正数等比数列,若,则公比的取值范围是___________.3.设等差数列的前 n 的和,若,则当 n=_________时,取得最大值.4.等差数列的前 n 的和,且,则=__________.5.设等差数列的首项且从第 5 项开始是正数,则公差的取值范围是____________.6.给出下列命题:(1), 是项数相等的等差数列,则数列(其中为常数)也是等差数列;(2), 是项数相等的等比数列,则数列不一定是等比数列;(3)若数列是等比数列,,则数列不是等比数列;其中正确的命题是 (填序号).7 .已知数列是等差数列,是它的前 n 的和,则数列{}是_________数列,数列{}(其中且)是__________数列;若是每项都是正数的等比数列,则数列{}(其中且)是__________数列.8.已知=,把数列的各项排成三角形状: …记 A()为第 行中第个数,则 A(10,8)=_______________.【例题分析】例 1 有四个数成等比数列,将这四个数分别减去 1,1,4,13 后成等差数列,求这四个数.1例 2 设数列是由正数组成的等比数列,是它的前 n 的和,证明:.例 3 已知等比数列的首项0,公比,设 数列的通项为()把数列与的前和分别记为与,试比较与的大小.例 4 已知数列 ,中,对于任何正整数都有:++…=。若数列是等比数列,数列是否为等差数列?若是,求出通项公式;若不是说明理由.例 5 已知数列中,,点在直线 y=x 上.(1)计算;(2)令,求证:数列是等比数列;(3)设分别为数列 ,的前 n 项和,是否存在实数 m,使得数列为等差数列?若存在,求出 m 的值;若不存在,说明理由.2【巩固迁移】1.某等比数列的前 7 项和为 48,前 14 项和为 60,则该数列的前 21 项和是______________.2.已知集合,将的元素按从小到大的顺序排列成一个数列,则 ,数列的通项公式为 .3.设 a,b,c 成等比...