层次分析法(AHP)对于草地农业生态系统这个涉及复杂的社会、经济、生态问题的系统,过去的系统分析与设计常常凭经验,靠主观推断进行,缺乏应有的科学性,因而往往造成重大失误。层次分析法是一种新的定性分析与定量分析相结合的系统分析方法,是将人的主观推断用数量形式表达和处理的方法,简称 AHP(The Analytic Hierarchy Process)法。近年来,层次分析法在草地农业生态系统的系统分析、设计与决策中日益受到重视。1 层次分析法的基本方法和步骤层次分析法是把复杂问题分解成各个组成因素,又将这些因素按支配关系分组形成递阶层次结构。通过两两比较的方式确定各个因素相对重要性,然后综合决策者的推断,确定决策方案相对重要性的总排序。运用层次分析法进行系统分析、设计、决策时,可分为 4 个步骤进行;(1)分析系统中各因素之间的关系,建立系统的递阶层次结构;(2)对同一层次的各元素关于上一层中某一准则的重要性进行两两比较,构造两两比较的推断矩阵;(3)由推断矩阵计算被比较元素对于该准则的相对权重;(4)计算各层元素对系统目标的合成权重,并进行排序,2 递阶层次结构的建立首先把系统问题条理化、层次化,构造出一个层次分析的结构模型。在模型中,复杂问题被分解,分解后各组成部分称为元素,这些元素又按属性分成若干组,形成不同层次。同一层次的元素作为准则对下一层的某些元素起支配作用,同时它又受上面层次元素的支配。层次可分为三类;(1)最高层:这一层次中只有一个元素,它是问题的预定目标或理想结果,因此也叫目标层;(2)中间层:这一层次包括要实现目标所涉及的中间环节中需要考虑的准则。该层可由若干层次组成,因而有准则和子准则之分,这一层也叫准则层;(3)最底层:这一层次包括为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。上层元素对下层元素的支配关系所形成的层次结构被称为递阶层次结构。当然,上一层元素可以支配下层的所有元素,但也可只支配其中部分元素。递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,可不受限制。每一层次中各元素所支配的元素一般不要超过 9 个,因为支配的元素过多会给两两比较推断带来困难。层次结构的好坏对于解决问题极为重要,当然,层次结构建立得好坏与决策者对问题的认识是否全面、深刻有很大关系。3 构造两两比较推断矩阵在递阶层次结构中,设上一层元素 C 为准则,所支配的下一层元素为u1,u2,...