直线和平面垂直的判定与性质(一) 一、素质教育目标(一)知识教学点1.直线和平面垂直的定义及相关概念.2.直线和平面垂直的判定定理.3.线线平行的性质定理(即例题 1).(二)能力训练点1.要善于应用平移手法将分散的条件集中到某一个图形中进行研究,特别是辅助线的添加.2.讲直线和平面垂直时,应注意引导学生把直线和平面关系转化为直线和直线的关系.如直线和平面垂直,只须这条直线垂直于这个平面内的两条相交直线,向学生渗透转化思想的应用.(三)德育渗透点引导学生认识到,定理的证明过程实质是应用转化思想的过程:立体几何的问题转化为平面几何的问题来解决,线、面垂直问题转化为线、线垂直问题来解决.转化思想是重要的数学思想方法,在立体几何的证明和解题中,是一种常用的思想方法.二、教学重点、难点、疑点及解决方法1.教学重点(1)掌握直线和平面垂直的定义:如果一条直线和一个平面内的任何一条直线垂直,那么这条直线就和这个平面垂直.(2)掌握直线和平面垂直的判定定理:(3)掌握线线平行的性质定理:若 a∥b,a⊥α 则 b⊥α.2.教学难点:在于线、面垂直定义的理解和判定定理的证明;同时还要解决好定理证明过程中,辅助线添加的方法和原因,及为何可用经过 B 点的两条直线说明“任意”直线的问题.3.教学疑点:判定定理的条件中,“相交”是关键,“两条”也是一个重要条件,对于初学立体几何的学生来讲,是不好理解的,教师应该用实例说明这两个条件缺一不可.三、课时安排本课题共安排 2 课时,本节课为第一课时.四、学生活动设计(略)五、教学步骤(一)温故知新,引入课题1.空间两条直线有哪几种位置关系?(三种:相交直线、平行直线、异面直线)2.经过一点和一条直线垂直的直线有几条?(从两条直线互相垂直的定义可知:经过一点有无数多条直线和已知直线垂直)3.空间一条直线与一个平面有哪几种位置关系?(直线在平面内、直线和平面相交、直线和平面平行.)4.怎样判定直线和平面平行?师:我们已经知道,判定直线和平面平行的问题可以转化为考察直线和直线平行的关系.今天我们转入学习直线和平面相交的一种特殊情形——直线和平面垂直,这个问题同样可以从两条直线垂直的关系入手.(板书课题:§1.9 直线和平面垂直)(二)猜想推测,激发兴趣1.教师演示课本上的实例并指出书脊(想象成一条直线)、各书页与桌面的交线,由于书脊和书页底边(即与桌面接触的一边)垂直,得...