习题一1、数系扩展的原则是什么?有哪两种扩展方式?(P9——P10)答:设数系 A 扩展后得到新数系为 B,则数系扩展原则为:(1)(2)A 的元素间所定义的一些运算或几本性质,在 B 中被重新定义。而且对于 A 的元素来说,重新定义的运算和关系与 A 中原来的意义完全一致。(3)在 A 中不是总能实施的某种运算,在 B 中总能施行。(4)在同构的意义下,B 应当是 A 的满足上述三原则的最小扩展,而且有 A 唯一确定。数系扩展的方式有两种:(1)添加元素法。(2)构造法。2、对自然数证明乘法单调性:设则(1)(2)(3)证明:(1)设命题能成立的所有 C 组成集合 M。由归纳公理知,所以命题对任意自然数成立。(2) (P17 定义 9)由(1)有 (P17.定义 9)或: (3) 3、对自然数证明乘法消去律:(1)(2)(3)证明(1)(用反证法)(2)方法同上。(3)方法同上。4、依据序数理论推求: 解: (P16.例 1) (2) 5、设,证明是 9 的倍数。证明: 则当 n=k+1 时:。。由①,②知,对于任一自然数 n 成立。6、用数学归纳法证明下式对于任意自然数都成立:证明: 。由、知,对任意自然数 n 命题成立。7、(1)(2)(3)。解:(1) (2) (3) 所得的各个数皆为自然数,因此, 。8、证明: 9.证明整数集具有离散性.证明:(反证法)假设整数集不具有离散性,即在相邻整数 a 和 a+1 之间存在。依据加法单调性, , 即.这就和自然数集具有离散性相矛盾。10、证明:有理数乘法满足结合律。证明: (1) 当 a,b,c 中至少有一个为零。(1)显然成立。设 a,b,c 都不为零。因为算术数乘法满足结合律,故。故(1)两边的绝对值相等。假如 a,b,c 中有一个或三个都是负数,则(1)两边都为负数;假如 a,b,c 中没有负数或有两个负数,则(1)两边都是正数,说明(1)两边的符号相同。因此(1)成立。11、指出下列集合中可以畅通无阻的算术运算,并且推断哪些集合构成数环:; ; ; ; ; ;; 。答:(1)加,乘,成环(2)乘,除(3)加,乘(4)加,乘(5)加,乘,除(6)乘(7)加,乘,成环(8)加,乘,成环12、设有 n 个正分数 (分母为正分数)求证:.证明: 设 (1)即 (2) (3) (n). 14.已知近似数 2315.4 的相对误差界是,.是确定它的绝对误差界,并指出它的有效数字的个数。故近似数精确到个位所以有效数字有 4 个19.辨别下面的断语有无错误,...