平面向量的概念、线性运算及坐标运算【考纲要求】1.了解向量的实际背景;理解平面向量的概念及向量相等的含义;理解向量的几何表示.2.掌握向量加法、减法的运算,并理解其几何意义;掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;了解向量线性运算的性质及其几何意义.3.了解平面向量的基本定理及其意义,掌握平面向量的正交分解及其坐标表示,会用坐标表示平面向量的加法、减法与数乘运算,理解用坐标表示的平面向量共线的条件.【知识网络】【考点梳理】【高清课堂:平面向量的概念与线性运算 401193 知识要点】考点一、向量的概念1.向量:既有大小又有方向的量.通常用有向线段表示,其中A为起点,B为终点.向量的长度又称为向量的模;长度为0的向量叫做零向量,长度为1的向量叫做单位向量.2.方向相同或相反的非零向量叫做平行向量,规定零向量与任一向量平行.平行向量可通过平移到同一条直线上,因此平行向量也叫共线向量.3.长度相等且方向相同的向量叫做相等向量.零向量与零向量相等.4. 与长度相等,方向相反的向量叫做的相反向量,规定零向量的相反向量是零向量.平面向量平面向量的概念平面向量的坐标表示平面向量的基本定理平面向量的线性运算要点诠释: ① 有向线段的起、终点决定向量的方向,与表示不同方向的向量;②有向线段的长度决定向量的大小,用表示,.③任意两个非零的相等向量可经过平移重合在一起,因此可用一个有向线段表示,而与起点无关.考点二、向量的加法、减法1.向量加法的平行四边形法则平行四边形ABCD中(如图),向量与的和为,记作:.(起点相同)2.向量加法的三角形法则根据向量相等的定义有:,即在Δ中,.首尾相连的两个向量的和是以第一个向量的起点指向第二个向量的终点.规定:零向量与向量的和等于.3. 向量的减法向量与向量叫做相反向量.记作:.则.要点诠释:①关于两个向量的和应注意:两个向量的和仍是一个向量;使用三角形法则时要注意“首尾相连”;当两个向量共线时,三角形法则适用,而平行四边形法则不适用.②向量减法运算应注意:向量的减法实质是加法的逆运算,差仍为一个向量;用三角形法则作向量减法时,记住“连结两个向量的终点,箭头指向被减向量”.要点三、实数与向量的积1.定义:一般地,实数与向量的积是一个向量,记作,它的长与方向规定如下:(1);(2)当>0 时,的方向与的方向相同;当<0 时,的方向与的方向相反; 当=0 时,;2.运算律设,为实数,则(1);(2)...