"福建省长乐第一中学 2014 高中数学 第一章《1.2.2 基本初等函数的导数公式及导数的运算法则》教案 新人教 A 版选修 2-2 "教学目标:1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.教学重点:基本初等函数的导数公式、导数的四则运算法则教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用教学过程:一.创设情景五种常见函数、、、、的导数公式及应用二.新课讲授(一)基本初等函数的导数公式表(二)导数的运算法则导数运算法则1.2.3.(2)推论: (常数与函数的积的导数,等于常数乘函数的导数)三.典例分析 1(6);(7)【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心.例 3 日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将 1 吨水净化到纯净度为时所需费用(单位:元)为求净化到下列纯净度时,所需净化费用的瞬时变化率:(1) (2) 函 数在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,.它表示纯净度为左右时净化费用的瞬时变化率,大约是纯净度为左右时净化费用的瞬时变化率的 25 倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加 的速度也越快.四.课堂练习1.课本 P92练习2.已知曲线 C:y =3 x 4-2 x3-9 x2+4,求曲线 C 上横坐标为1 的点的切线方程;(y =-12 x +8)五.回顾总结(1)基本初等函数的导数公式表(2)导数的运算法则六.教后反思:2