电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第5章 数列 第4节 数列求和教学案 理(含解析)北师大版-北师大版高三全册数学教学案

高考数学一轮复习 第5章 数列 第4节 数列求和教学案 理(含解析)北师大版-北师大版高三全册数学教学案_第1页
1/6
高考数学一轮复习 第5章 数列 第4节 数列求和教学案 理(含解析)北师大版-北师大版高三全册数学教学案_第2页
2/6
高考数学一轮复习 第5章 数列 第4节 数列求和教学案 理(含解析)北师大版-北师大版高三全册数学教学案_第3页
3/6
第四节 数列求和[考纲传真] 1.掌握等差、等比数列的前 n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法.1.公式法(1)等差数列的前 n 项和公式:Sn==na1+ d ;(2)等比数列的前 n 项和公式:Sn=2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前 n 项和.裂项时常用的三种变形:①=-;②=;③=-.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前 n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{an}与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前 n 项和即可用倒序相加法求解.(5)并项求和法:一个数列的前 n 项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求解.例如,Sn=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.[常用结论]常用求和公式(1)1+2+3+4+…+n=.(2)1+3+5+7+…+2n-1=n2.(3)2+4+6+8+…+2n=n2+n.(4)12+22+…+n2=.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)已知等差数列{an}的公差为 d,则有=.( )(2)当 n≥2 时,=.( )(3)求 Sn=a+2a2+3a3+…+nan之和时只要把上式等号两边同时乘以 a 即可根据错位相减法求得.( )(4)如果数列{an}是周期为 k(k 为大于 1 的正整数)的周期数列,那么 Skm=mSk.( )[答案] (1)√ (2)√ (3)× (4)√2.(教材改编)数列{an}的前 n 项和为 Sn,若 an=,则 S5等于( )A.1 B.C. D.B [ an==-,∴S5=a1+a2+…+a5=1-+-+…-=.]3.数列{an}的通项公式是 an=,前 n 项和为 9,则 n 等于( )A.9 B.99C.10 D.100B [ an==-,∴Sn=a1+a2+…+an=(-)+(-)+…+(-)+(-)=-1,令-1=9,得 n=99,故选 B.]4.数列{1+2n-1}的前 n 项和为( )A.1+2n B.2+2nC.n+2n-1 D.n+2+2nC [Sn=(1+1+…+1)+(20+21+…+2n-1)=n+=2n+n-1.故选 C.]5.数列{an}的前 n 项和为 Sn,已知 Sn=1-2+3-4+…+(-1)n - 1·n,则 S17=________....

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第5章 数列 第4节 数列求和教学案 理(含解析)北师大版-北师大版高三全册数学教学案

您可能关注的文档

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部