第六节 n 次独立重复试验与二项分布[最新考纲] 1.了解条件概率的概念,了解两个事件相互独立的概念.2.理解 n 次独立重复试验的模型及二项分布,并能解决一些简单问题.1.条件概率在已知 B 发生的条件下,事件 A 发生的概率叫作 B 发生时 A 发生的条件概率,用符号P ( A | B ) 来表示,其公式为 P(A|B)=(P(B)>0).2.相互独立事件(1)一般地,对两个事件 A,B,如果 P ( AB ) = P ( A ) P ( B ) ,则称 A,B 相互独立.(2)如果 A,B 相互独立,则 A 与,与 B,与也相互独立.(3)如果 A1,A2,…,An相互独立,则有 P(A1A2…An)=P(A1)P(A2)…P(An).3.独立重复试验与二项分布(1)独立重复试验在相同条件下重复做的 n 次试验称为 n 次独立重复试验,其中 Ai(i=1,2,…,n)是第 i次试验结果,则P(A1A2A3…An)=P ( A 1) P ( A 2) P ( A 3)… P ( A n).(2)二项分布进行 n 次试验,如果满足以下条件:① 每次试验只有两个相互对立的结果,可以分别称为“成功”和“失败”;② 每次试验“成功”的概率均为 p,“失败”的概率均为 1-p;③ 各次试验是相互独立的.用 X 表示这 n 次试验中成功的次数,则P(X=k)=C p k (1 - p ) n - k (k=0,1,2,…,n).若一个随机变量 X 的分布列如上所述,称 X 服从参数为 n,p 的二项分布,简记为 X~B(n,p).牢记且理解事件中常见词语的含义(1)A,B 中至少有一个发生的事件为 A + B ;(2)A,B 都发生的事件为 AB;(3)A,B 都不发生的事件为;(4)A,B 恰有一个发生的事件为 A + B ;(5)A,B 至多一个发生的事件为 A + B + .一、思考辨析(正确的打“√”,错误的打“×”)(1)相互独立事件就是互斥事件.( )(2)若事件 A,B 相互独立,则 P(B|A)=P(B).( )(3)公式 P(AB)=P(A)P(B)对任意两个事件都成立.( )(4)二项分布是一个概率分布列,是一个用公式 P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n表示的概率分布列,它表示了 n 次独立重复试验中事件 A 发生的次数的概率分布.( )1[答案] (1)× (2)√ (3)× (4)√二、教材改编1.如果某一批玉米种子中,每粒发芽的概率均为,那么播下 5 粒这样的种子,恰有 2 粒不发芽的概率是( )A. B. C. D.A [用 X 表示发芽的粒数,则 X~B,则 P(X=3)=C×3×2=,故播下 5 粒这样的种子,恰有 2 粒不发芽的概...