第 1 讲 任意角和弧度制及任意角的三角函数板块一 知识梳理·自主学习 [必备知识]考点 1 角的概念1.分类2.终边相同的角:所有与角 α 终边相同的角,连同角 α 在内,可构成一个集合 S={β|β=α+k·360°,k∈Z}.考点 2 弧度的定义和公式1.定义:长度等于半径长的弧所对的圆心角叫做 1 弧度的角,弧度记作 rad.2.公式:(1)弧度与角度的换算:360°=2π 弧度;180°=π 弧度;(2)弧长公式:l=| α | r ;(3)扇形面积公式:S 扇形=lr 和 S 扇形=|α|r2.说明:(2)(3)公式中的 α 必须为弧度制.考点 3 任意角的三角函数1.定义:设 α 是一个任意角,它的终边与单位圆交于点 P(x,y),则 sinα=y,cosα=x,tanα=(x≠0).2.几何表示:三角函数线可以看作是三角函数的几何表示. 正弦线的起点都在 x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段 MP,OM,AT 分别叫做角 α 的正弦线、余弦线和正切线.[必会结论]1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.2.任意角的三角函数的定义(推广)设 P(x,y)是角 α 终边上异于顶点的任一点,其到原点 O 的距离为 r,则 sinα=,cosα=,tanα=(x≠0).[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)第一象限角必是锐角.( )(2)不相等的角终边一定不相同.( )(3)终边落在 x 轴非正半轴上的角可表示为 α=2kπ+π(k∈Z). ( )(4)1 弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位.( )(5)三角函数线的方向表示三角函数值的正负.( )答案 (1)× (2)× (3)√ (4)√ (5)√2.[课本改编]下列与的终边相同的角的表达式中正确的是( )A.2kπ+45°(k∈Z) B.k·360°+(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)答案 C解析 与的终边相同的角可以写成 2kπ+(k∈Z),但是角度制与弧度制不能混用,所以只有 C 正确.3.[课本改编]若 sinα<0 且 tanα>0,则 α 是( )A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角答案 C解析 sinα<0,则 α 为第三、四象限角或 y 轴负半轴上的角,tanα>0,则 α 为第一、三象限角,故 α 为第三象限角.选 C.4.若角 α 终边上有一点 P(x,5),且 cosα=(x≠0),则 sinα=________.答案 解析 cosα==,x=±12,∴s...