电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第八章 立体几何 第1讲 空间几何体的三视图、直观图、表面积与体积练习 理 试题VIP免费

高考数学一轮复习 第八章 立体几何 第1讲 空间几何体的三视图、直观图、表面积与体积练习 理 试题_第1页
1/6
高考数学一轮复习 第八章 立体几何 第1讲 空间几何体的三视图、直观图、表面积与体积练习 理 试题_第2页
2/6
高考数学一轮复习 第八章 立体几何 第1讲 空间几何体的三视图、直观图、表面积与体积练习 理 试题_第3页
3/6
第八章立体几何第1讲空间几何体的三视图、直观图、表面积与体积练习理新人教A版基础巩固题组(建议用时:40分钟)一、选择题1.一个简单几何体的正视图、侧视图分别为如图所示的矩形、正方形,则其俯视图不可能为()A.矩形B.直角三角形C.椭圆D.等腰三角形解析依题意,题中的几何体的俯视图的长为3、宽为2,因此结合题中选项知,其俯视图不可能是等腰三角形,故选D.答案D2.某几何体的三视图如图所示,则该几何体的体积为()A.+2πB.C.D.解析由三视图可知,该几何体是一个底面半径为1,高为2的圆柱和底面半径为1,高为1的半圆锥拼成的组合体.所以该几何体的体积为××π×12×1+π×12×2=,故选B.答案B3.(2014·新课标全国Ⅱ卷)正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A-B1DC1的体积为()A.3B.C.1D.解析如图,在正△ABC中,D为BC中点,则有AD=AB=,又 平面BB1C1C⊥平面ABC,AD⊥BC,AD⊂平面ABC,由面面垂直的性质定理可得AD⊥平面BB1C1C,即AD为三棱锥A-B1DC1的底面B1DC1上的高.∴VA-B1DC1=S△B1DC1·AD=××2××=1,故选C.答案C4.(2015·全国Ⅱ卷)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π解析如图,要使三棱锥O-ABC即C-OAB的体积最大,当且仅当点C到平面OAB的距离,即三棱锥C-OAB底面OAB上的高最大,其最大值为球O的半径R,则VO-ABC最大=VC-OAB最大=×S△OAB×R=××R2×R=R3=36,所以R=6,得S球O=4πR2=4π×62=144π,选C.答案C5.(2015·全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,“书中有如下问题:今有委米依垣内角,下周八尺,高五尺,”“问:积及为米几何?其意思为:在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和”堆放的米各为多少?已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛解析由题意知:米堆的底面半径为(尺),体积V=×πR2·h≈(立方尺).所以堆放的米大约为≈22(斛).答案B二、填空题6.如图所示,E,F分别为正方体ABCD-A1B1C1D1的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是________(填序号).解析由正投影的定义,四边形BFD1E在面AA1D1D与面BB1C1C上的正投影是图③;其在面ABB1A1与面DCC1D1上的正投影是图②;其在面ABCD与面A1B1C1D1上的正投影也是②,故①④错误.答案②③7.(2016·哈尔滨、长春、沈阳、大连四市联考)如图,半球内有一内接正四棱锥S-ABCD,该四棱锥的体积为,则该半球的体积为________.解析设所给半球的半径为R,则棱锥的高h=R,底面正方形中有AB=BC=CD=DA=R,∴其体积为R3=,则R3=2,于是所求半球的体积为V=πR3=π.答案π8.在三棱锥P-ABC中,D,E分别为PB,PC的中点,记三棱锥D-ABE的体积为V1,P-ABC的体积为V2,则=________.解析如图,设点C到平面PAB的距离为h,△PAB的面积为S,则V2=Sh,V1=VE-ADB=×S×h=Sh,所以=.答案三、解答题9.如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积.解(1)正六棱锥.(2)其侧视图如图:其中AB=AC,AD⊥BC,且BC的长是俯视图中的正六边形对边的距离,即BC=a,AD的长是正六棱锥的高,即AD=a,∴该平面图形的面积S=a·a=a2.(3)V=×6×a2×a=a3.10.如图,在长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.解(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,AH=10,HB=6.故S四边形A1EHA=×(4+10)×8=56,S四边形EB1BH=×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱,所以其...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第八章 立体几何 第1讲 空间几何体的三视图、直观图、表面积与体积练习 理 试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部