§6.1数列的概念及其表示考点数列的概念及表示方法5.(2013安徽,14,5分)如图,互不相同的点A1,A2,…,An,…和B1,B2,…,Bn,…分别在角O的两条边上,所有AnBn相互平行,且所有梯形AnBnBn+1An+1的面积均相等.设OAn=an.若a1=1,a2=2,则数列{an}的通项公式是.答案an=解析记△OA1B1的面积为S,则△OA2B2的面积为4S.从而四边形AnBnBn+1An+1的面积均为3S.即得△OAnBn的面积为S+3(n-1)S=(3n-2)S.∴=3n-2,即an=.评析△OAnBn的面积构成一个等差数列,而△OAnBn与△OA1B1的面积比为,从而得到{an}的通项公式.本题综合考查了平面几何、数列的知识.6.(2012山东,20,12分)在等差数列{an}中,a3+a4+a5=84,a9=73.(1)求数列{an}的通项公式;(2)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm.解析(1)因为{an}是一个等差数列,所以a3+a4+a5=3a4=84,a4=28.设数列{an}的公差为d,则5d=a9-a4=73-28=45,故d=9.由a4=a1+3d得28=a1+3×9,即a1=1.所以an=a1+(n-1)d=1+9(n-1)=9n-8(n∈N*).(2)对m∈N*,若9m