第20练概率[明考情]概率是高考的必考知识点,以选择题形式考查古典概型和几何概型的应用.近几年出现古典概型与统计的交汇题型,难度为中低档.[知考向]1.随机事件及其概率.2.古典概型.3.几何概型.考点一随机事件的概率要点重组(1)对立事件是互斥事件的特殊情况,互斥事件不一定是对立事件.(2)若事件A,B互斥,则P(A∪B)=P(A)+P(B);若事件A,B对立,则P(A)=1-P(B).1.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶答案D解析射击两次有四种可能,就是(中,不中)、(不中,中)、(中,中)、(不中,不中),其中“至少有一次中靶”含有前三种情况,选项A、B、C中都有与其重叠的部分,只有选项D为其互斥事件,也是对立事件.2.从一箱产品中随机抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.7,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为()A.0.7B.0.2C.0.1D.0.3答案D解析 “抽到的不是一等品”的对立事件是“抽到一等品”,事件A={抽到一等品},P(A)=0.7,∴“抽到的不是一等品”的概率是1-0.7=0.3.3.抛掷一枚均匀的正方体骰子(各面分别标有数字1,2,3,4,5,6),事件A表示“朝上一面的数是奇数”,事件B表示“朝上一面的数不超过3”,则P(A∪B)=________.答案解析事件A∪B可以分成事件C:“朝上一面的数为1,2,3”与事件D:“朝上一面的数为5”这两件事,则事件C和事件D互斥,故P(A∪B)=P(C∪D)=P(C)+P(D)=+==.4.抛掷两枚质地均匀的骰子,得到的点数分别为a,b,那么直线bx+ay=1的斜率k≥-的概率是________.答案解析因为k=-≥-,所以≤.符合题意的情况(b,a)有(1,3),(1,4),(1,5),(1,6),(2,5),(2,6),所以所求概率为P==.5.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________.答案解析“至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P==.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.故他属于不超过2个小组的概率是P=1-=.考点二古典概型方法技巧求古典概型问题的两种方法:(1)转化为几个互斥事件的和,利用互斥事件的加法公式求解;(2)要用间接法,利用对立事件的概率公式进行求解.6.(2017·天津)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.B.C.D.答案C解析从5支彩笔中任取2支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,其中取出的2支彩笔中含有红色彩笔的取法有红黄、红蓝、红绿、红紫,共4种,所以所求概率P==.故选C.7.(2017·玉林质检)有两张卡片,一张的正反面分别画着老鼠和小鸡,另一张的正反面分别画着老鹰和蛇.现在有个小孩随机地将两张卡片排在一起放在桌面上,不考虑顺序,则向上的图案是老鹰和小鸡的概率是()A.B.C.D.答案C解析向上的图案为鼠鹰、鼠蛇、鸡鹰、鸡蛇四种情况,其中向上的图案是鸡鹰的概率为.故选C.8.(2017·潮州模拟)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为()A.B.C.D.答案A解析分别用A,B,C表示齐王的上、中、下等马,用a、b、c表示田忌的上、中、下等马,现从双方的马匹中随机选一匹进行一场比赛有Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc共9场比赛,其中田忌马获胜的有Ba,Ca,Cb共3场比赛,所以田忌马获胜的概率为,故选A.9.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.B.C.D.答案C解析从1,2...