§9.4 直线与圆、圆与圆的位置关系最新考纲考情考向分析1.会解决直线与圆的位置关系的问题.2.会判断圆与圆的位置关系.考查直线与圆的位置关系、圆与圆的位置关系的判断;根据位置关系求参数的范围、最值、几何量的大小等.题型以选择、填空题为主,要求相对较低.1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离 d 和圆的半径 r 的大小关系.d < r ⇔相交;d = r ⇔相切;d > r ⇔相离.(2)代数法:――→2.圆与圆的位置关系设圆 O1:(x-a1)2+(y-b1)2=r(r1>0),圆 O2:(x-a2)2+(y-b2)2=r(r2>0).方法位置关系几何法:圆心距 d 与 r1,r2的关系代数法:联立两圆方程组成方程组的解的情况外离d > r 1+ r 2无解外切d = r 1+ r 2一组实数解相交| r 1- r 2|< d < r 1+ r 2两组不同的实数解内切d = | r 1- r 2|( r 1≠ r 2)一组实数解内含0≤ d <| r 1- r 2|( r 1≠ r 2)无解概念方法微思考1.在求过一定点的圆的切线方程时,应注意什么?提示 应首先判断这点与圆的位置关系,若点在圆上则该点为切点,切线只有一条;若点在圆外,切线应有两条;若点在圆内,切线为零条.2.用两圆的方程组成的方程组有一解或无解时能否准确判定两圆的位置关系?提示 不能,当两圆方程组成的方程组有一解时,两圆有外切和内切两种可能情况,当方程组无解时,两圆有相离和内含两种可能情况.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(2)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(3)过圆 O:x2+y2=r2上一点 P(x0,y0)的圆的切线方程是 x0x+y0y=r2.( √ )(4)过圆 O:x2+y2=r2外一点 P(x0,y0)作圆的两条切线,切点分别为 A,B,则 O,P,A,B四点共圆且直线 AB 的方程是 x0x+y0y=r2.( √ )(5)如果直线与圆组成的方程组有解,则直线与圆相交或相切.( √ )题组二 教材改编2.[P128T4]若直线 x-y+1=0 与圆(x-a)2+y2=2 有公共点,则实数 a 的取值范围是( )A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)答案 C解析 由题意可得,圆的圆心为(a,0),半径为,∴≤,即|a+1|≤2,解得-3≤a≤1.3.[P130 练习]圆(x+2)2+y2=4 与圆(x-2)2+(y-1)2=9 的位置关系为( )A.内切B.相交C.外切...