例说放缩法证明不等式宜都二中 唐 华高考中利用放缩方法证明不等式,文科涉及较少,但理科却常常出现,且多是在压轴题中出现。放缩法证明不等式有法可依,但具体到题,又常常没有定法,它综合性强,形式复杂,运算要求高,往往能考查考生思维的严密性,深刻性以及提取和处理信息的能力较好地体现高考的甄别功能。本文旨在归纳几种常见的放缩法证明不等式的方法,以冀起到举一反三,抛砖引玉的作用。一、 放缩后转化为等比数列。例 1. 满足:(1)用数学归纳法证明:(2),求证:解:(1)略(2) 又 , 迭乘得: 点评:把握“”这一特征对“”进行变形,然后去掉一个正项,这是不等式证明放缩的常用手法。这道题假如放缩后裂项或者用数学归纳法,似乎是不可能的,为什么?值得体味!二、放缩后裂项迭加例 2.数列,,其前项和为求证:解:令,的前项和为当时, 点评:本题是放缩后迭加。放缩的方法是加上或减去一个常数,也是常用的放缩手法。值得注意的是若从第二项开始放大,得不到证题结论,前三项不变,从第四项开始放大,命题才得证,这就需要尝试和创新的精神。例 3.已知函数的图象在处的切线方程为(1)用表示出(2)若在上恒成立,求的取值范围(3)证明:解:(1)(2)略(3)由(II)知:当令且当令即将上述 n 个不等式依次相加得整理得点评:本题是 2025 湖北高考理科第 21 题。近年,以函数为背景建立一个不等关系,然后对变量进行代换、变形,形成裂项迭加的样式,证明不等式,这是一种趋势,应特别关注。当然,此题还可考虑用数学归纳法,但仍需用第二问的结论。三、 放缩后迭乘例 4..(1)求(2)令,求数列的通项公式(3)已知,求证: 解:(1)(2)略 由(2)得 点评:裂项迭加,是项项相互抵消,而迭乘是项项约分,其原理是一样的,都似多米诺骨牌效应。只是求项和时用迭加,求项乘时用迭乘。