第六章 圆6.1 圆的性质考点 1 圆的有关概念及性质陕西考点解读中考说明:了解等圆、等弧的概念。理解圆、弧、弦、圆心角、圆周角的概念。1. 圆的有关概念(1) 圆:平面上到①定点的距离等于②定长的所有点组成的图形叫作圆。③定点叫圆心,④定长叫半径,以 O 为圆心的圆记作⊙ O 。(2) 弧和弦:圆上任意两点间的部分叫⑤弧,连接圆上任意两点的线段叫⑥弦,经过圆心的弦叫直径,直径是最长的⑦弦。(3) 圆心角:顶点在⑧圆心,角的两边与圆相交的角叫作圆心角。(4) 圆周角:顶点在⑨圆上,角的两边与圆相交的角叫作圆周角。(5) 等弧:在同圆或等圆中,能够完全重合的弧。2. 圆的有关性质圆的对称性:(1) 圆是轴对称图形,其对称轴是过圆心的任意一条直线。(2) 圆是中心对称图形,对称中心是圆心。(3) 旋转不变性,即圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合。陕西考点解读(1) 直径是弦,但弦不一定是直径; (2) 半圆是弧,但弧不一定是半圆; (3) 弧有长度和度数,圆心角的度数等于它所对的弧的度数,规定半圆的度数为 180° ,劣弧的度数小于 180° ,优弧的度数大于 180° ; (4) 在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧。【特别提示】【提分必练】1. 如图,在⊙ O 中, AB 是直径, AC 是弦,连接 OC ,若∠ ACO=30° ,则∠ BOC 的度数是 ( ) 第 1 题图A.30° B.45° C.55° D.60°D陕西考点解读1. 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。2. 垂径定理的推论(1) 平分弦 ( 不是直径 ) 的直径垂直于弦,并且平分弦所对的两条弧;(2) 弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。考点 2 垂径定理及其推论(1) 一条直线如果具有: a. 经过圆心, b. 垂直于弦, c. 平分弦 ( 被平分的弦不是直径 ) , d. 平分弦所对的优弧, e. 平分弦所对的劣弧,以上这五条中的任意两条,则具备其余三条; (2) 在同圆或等圆中,两条平行弦所夹的弧相等。【特别提示】【提分必练】2. 如图,在⊙ O 中, AB 是直径, CD 是弦, AB⊥CD ,垂足为 E ,连接 CO , AD ,∠ BAD=20° ,则下列说法正确的是 ( )A.AD=2OB B.CE=EO C.∠OCE=40° D.∠BOC=2∠BAD第 2 题图D考点 3 弦、弧、弦心距、圆心角的关系定理及...