电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

合同与相似概念区别VIP免费

合同与相似概念区别_第1页
1/3
合同与相似概念区别_第2页
2/3
合同与相似概念区别_第3页
3/3
代数中“合同”与“相似”概念的区别辨析在《高等代数》中队与多个矩阵有“合同”与“相似”的概念,关于这两组概念在定义上有很多相似的地方(合同---B=C'AC,相似-----B=C-1AC),并且在《高等代数》在讲到“(欧式空间下)实对称矩阵的标准形”时有如下的定理:对于任意一个〃级实对称矩阵A,都存在一个〃级正交矩阵T,使得T'AT=T-1AT因此在这里给我们一种印象,即矩阵间的合同与相似在某种条件下画了“=”,这究竟是怎么回事,为此我们应该去深入的探求矩阵“合同”与“相似”之间的联系。这个过称是循序渐进的,在学习“双线性函数”后,又对这个问题有了更深刻的理解,并且大胆的估计,“合同”与“相似”在概念上的区别会是代数问题上的一类大问题,现在对这个问题的思考结果归纳如下让我们先从线性变换这一概念出发,我们知道在对线性空间上的线性变换的有关性质直接的进行研究是不好做的,为此我们引进了“线性变换的矩阵”这一概念,即在一个线性变换,n维空间的一组基,一个n阶矩阵之间建立起了一对一的关系,关系如图线性变换对空间元素的作用直接体现在基上,空间的一组基一一个矩阵变换的运算可反映在矩阵的运算上,线性变换而我们知道同一个线性变换在不同的一组基下,它所对应的矩阵是不同的,而这些矩阵之间的关系我们把它定义为“相似”,并且我们可以知道这些相似矩阵之间有这样的关系B=X-1AX,X为这两组基之间的过渡矩阵,回顾“相似”概念,我们可以看出,“相似”的提出时基于“线性变换”。“相似”是同一个线性变换在不同基下的矩阵之间的关系,我们在提炼一下,“相似”的出现是同一个线性变换在不同背景之下的不同的表现形式之间的关系,这对后面区别“合同”与“相似”有很重要的意义下面我们再来看看“合同”概念。《高等代数》在二次型的章节中对二次型化标准形的过程中首次提出了“合同“的概念。对一个二次型进行非退化的线性替换,这样的二次型的不同矩阵之间的关系定义为“合同”,即B=C'AC。而回顾“合同”的概念,我们可以发现,“合同”的概念是基于二次型的化简中产生的概念,而当我们学习了双线性函数的内容后就会发现“合同”的概念是基于双线性函数提出的,因此在这里我们有必要提出双线性函数的有关内容:双线性函数类比欧式空间中的线性变换是线性空间上的一种映射,所谓的“双线性”是指在固定一个自变量的情况下,另一个自变量满足“线性”的关系。为了研究着这种特殊的映射在空间下的性质,我们有引进了双线性函数的“度量矩阵”,并以此矩阵来研究双线性函数的有关性质。于是双线性函数与空间的一组基、一个n阶矩阵也建立起了一种一一对应的关系,如图双线性函数对空间元素的作用直接体现在基上,空间的一组基T一个矩阵变换的运算可反映在矩阵的运算上,双线性函数因此,我们可以对“合同”的概念有了这样的理解:“合同”的出现是同一个双线性函数在不同背景下的不同的表现形式之间的关系至此我们回顾了“相似”与“合同”的概念的来由,从中我们可以看出,两者概念的提出是基于不同的背景而提出的,“相似”是基于“线性变换”;“合同”是基于“双线性函数”。所以可以这样说,“相似”与“合同”是不同的映射的不同表现形式的一种关系而在《高等代数》讲到“实对称矩阵的标准形”时的定理,暗示了我们尽管“合同”与“相似”是基于不同的背景提出的,但是他们之间在某种时候是可以划等号的,这又是问什么呢?我们在研究线性变换与双线性函数的性质时,都将矩阵引入作为一种工具,也就是说无论是线性变换还是双线性函数的性质,都可以从矩阵的角度来体现。因此如果我们单纯给出一个〃阶矩阵,我们既可以把它看成一个线性变换在一组基下的矩阵,也可以看成是一个双线性函数在一组基下的度量矩阵,这样一个单纯的矩因我们的视角不同就有了不同的理解。现在我们再来回顾“实对称矩阵的标准形”的定理:对于任意一个n级实对称矩阵A,都存在一个n级正交矩阵T,使得T'AT=T-1AT对于这个定理我们给出这样的解释:对于一个n级实对称矩阵,如果我们把它看成是线性变换在一组基下的实对称矩阵A,而这个线性变换在另一组基下的矩阵是对角矩阵B;...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

合同与相似概念区别

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部