考点规范练12函数与方程一、基础巩固1.已知函数f(x)={2x-1,x≤1,1+log2x,x>1,则函数f(x)的零点为()A.12,0B.-2,0C.12D.02.函数y=ln(x+1)与y=1x的图象交点的横坐标所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)3.由表格中的数据可以判定函数f(x)=lnx-x+2的一个零点所在的区间是(k,k+1)(k∈Z),则k的值为()x12345lnx00.691.101.391.61x-2-10123A.1B.2C.3D.44.若函数f(x)=2x-2x-a的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)5.若f(x)是奇函数,且x0是函数y=f(x)+ex的一个零点,则-x0一定是下列哪个函数的零点()A.y=f(-x)ex-1B.y=f(x)e-x+1C.y=exf(x)-1D.y=exf(x)+16.已知函数f(x)={|2x-1|,x<2,3x-1,x≥2,若方程f(x)-a=0有三个不同的实数根,则实数a的取值范围是()A.(1,3)B.(0,3)C.(0,2)D.(0,1)7.已知函数f(x)=x3+ax2+bx+1,函数y=f(x+1)-1为奇函数,则函数f(x)的零点个数为()A.0B.1C.2D.38.已知偶函数f(x)满足f(x-1)=f(x+1),且当x∈[0,1]时,f(x)=x,则关于x的方程f(x)=(110)x在区间[0,4]上解的个数是()A.1B.2C.3D.49.已知f(x)=|lg(x-1)|,若0
0,-x2-2x,x≤0,若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是.11.设函数f(x)={log2x,x>0,4x,x≤0,则f(f(-1))=;若函数g(x)=f(x)-k存在两个零点,则实数k的取值范围是.12.已知函数f(x)=5x+x-2,g(x)=log5x+x-2的零点分别为x1,x2,则x1+x2的值为.二、能力提升13.已知函数f(x)=|2x-2|+b的两个零点分别为x1,x2(x1>x2),则下列结论正确的是()A.11,x1+x2<2D.x1>1,x1+x2<114.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上为增函数,若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4的值为()A.8B.-8C.0D.-415.已知e是自然对数的底数,函数f(x)=ex+x-2的零点为a,函数g(x)=lnx+x-2的零点为b,则下列不等式中成立的是()A.f(a)1,2x,x≤1,则函数h(x)=f(x)-g(x)在区间[-5,5]上的零点的个数为.三、高考预测18.已知函数f(x)是定义在R上的偶函数,且对任意的x∈R都有f(x+1)=f(x-1).当0≤x≤1时,f(x)=x2.若函数y=f(x)-x-a在[0,2]上有三个不同的零点,则实数a的取值范围为.考点规范练12函数与方程1.D解析当x≤1时,由f(x)=2x-1=0,解得x=0;当x>1时,由f(x)=1+log2x=0,解得x=12,又因为x>1,所以此时方程无解.综上可知,函数f(x)的零点只有0,故选D.2.B解析函数y=ln(x+1)与y=1x的图象交点的横坐标,即为函数f(x)=ln(x+1)-1x的零点. f(x)在区间(0,+∞)内的图象是连续的,且f(1)=ln2-1<0,f(2)=ln3-12>0,∴f(x)的零点所在的区间为(1,2).故选B.3.C解析当x取值分别是1,2,3,4,5时,f(1)=1,f(2)=0.69,f(3)=0.1,f(4)=-0.61,f(5)=-1.39, f(3)f(4)<0,∴函数的零点在区间(3,4)内,∴k=3,故选C.4.C解析因为函数f(x)=2x-2x-a在区间(1,2)内单调递增,又函数f(x)=2x-2x-a的一个零点在区间(1,2)内,所以f(1)·f(2)<0,所以(-a)(4-1-a)<0,即a(a-3)<0.所以00,f(1+√33)>0,∴函数f(x)的零点个数为1,故选B.8.D解析由f(x-1)=f(x+1),可知函数f(x)的周期T=2.当x∈[0,1]时,f(x)=x.又f(x)是偶函数,所以f(x)的图象与y=(110)x的图象如图所示....