电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 高考大题规范解答系列(四)—立体几何(含解析)-人教版高三数学试题VIP免费

高考数学一轮复习 高考大题规范解答系列(四)—立体几何(含解析)-人教版高三数学试题_第1页
高考数学一轮复习 高考大题规范解答系列(四)—立体几何(含解析)-人教版高三数学试题_第2页
高考数学一轮复习 高考大题规范解答系列(四)—立体几何(含解析)-人教版高三数学试题_第3页
高考大题规范解答系列(四)——立体几何考点一线面的位置关系与体积计算例1(2017·全国卷Ⅲ)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【分析】①看到证明线线垂直(AC⊥BD),想到证明线面垂直,通过线面垂直证明线线垂直.②看到求四面体ABCE与四面体ACDE的体积比,想到确定同一平面,转化为求高的比.【标准答案】——规范答题步步得分(1)取AC的中点O,连接DO,BO.1分因为AD=CD,所以AC⊥DO.又由于△ABC是正三角形,所以AC⊥BO.又因为DO∩BO=O,从而AC⊥平面DOB,3分故AC⊥BD.4分(2)连接EO.5分由(1)及题设知∠ADC=90°,所以DO=AO.在Rt△AOB中,BO2+AO2=AB2,又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2,故∠DOB=90°.7分由题设知△AEC为直角三角形,所以EO=AC.8分又△ABC是正三角形,且AB=BD,所以EO=BD.故E为BD的中点,9分从而E到平面ABC的距离为D到平面ABC的距离的,四面体ABCE的体积为四面体ABCD的体积的,11分即四面体ABCE与四面体ACDE的体积之比为1∶1.12分【评分细则】①作出辅助线,并用语言正确表述得1分.②得出AC⊥DO和AC⊥BO得1分,由线面垂直的判定写出AC⊥平面DOB,再得1分.③由线面垂直的性质得出结论得1分.④作出辅助线,并用语言正确表述得1分.⑤由勾股定理逆定理得到∠DOB=90°得2分.⑥由直角三角形的性质得出EO=AC得1分.⑦由等边三角形的性质得出E为BD的中点,得1分.⑧得出四面体ABCE的体积为四面体ABCD的体积的得2分.⑨正确求出体积比得1分.【名师点评】1.核心素养:空间几何体的体积及表面积问题是高考考查的重点题型,主要考查考生“逻辑推理”及“直观想象”的核心素养.2.解题技巧:(1)得步骤分:在立体几何类解答题中,对于证明与计算过程中的得分点的步骤,有则给分,无则没分,所以,对于得分点步骤一定要写,如第(1)问中AC⊥DO,AC⊥BO;第(2)问中BO2+DO2=BO2+AO2=AB2=BD2等.(2)利用第(1)问的结果:如果第(1)问的结果对第(2)问的证明或计算用得上,可以直接用,有些题目不用第(1)问的结果甚至无法解决,如本题就是在第(1)问的基础上得到DO=AO.〔变式训练1〕(2019·河北省石家庄市质检)如图,已知三棱柱ABC-A1B1C1,侧面ABB1A1为菱形,侧面ACC1A1为正方形,侧面ABB1A1⊥侧面ACC1A1.(1)求证:A1B⊥平面AB1C;(2)若AB=2,∠ABB1=60°,求三棱锥C1-COB1的体积.[解析](1)证明: 四边形ACC1A1为正方形,∴AC⊥AA1,又平面ABB1A1⊥平面ACC1A1,∴AC⊥平面ABB1A1,从而A1B⊥AC,又侧面ABB1A1为菱形,∴A1B⊥AB1,又AB1⊂平面AB1C,AC⊂平面AB1C,∴A1B⊥平面AB1C.(2)因为A1C1∥AC,A1C1⊄平面AB1C,AC⊂平面AB1C,所以A1C1∥平面AB1C,所以,三棱锥C1-COB1的体积等于三棱锥A1-COB1的体积,A1B⊥平面AB1C,所以A1O为三棱锥A1-COB1的高,因为AB=2,∠ABB1=60°,S△COB1=×OB1×CA=×1×2=1,所以VC1-COB1=×A1O×S△COB1=××1=.考点二线面的位置关系与空间角例2(2018·课标Ⅲ,19)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M-ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.【分析】①在题目所给的两个平面中选择一条直线,证明该直线垂直于另一个平面;②建立空间直角坐标系,求得几何体体积最大时点M的位置,利用两个平面的法向量的夹角求解即可.【标准答案】——规范答题步步得分(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.2分因为M为上异于C,D的两点,且DC为直径,所以DM⊥CM.3分又BC∩CM=C,所以DM⊥平面BMC.4分而DM⊂平面AMD,故平面AMD⊥平面BMC.5分(2)以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz.当三棱锥M-ABC体积最大时,M为的中点.由题设得D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),M(0,1,1),AM=(-2,1,1),AB=(0,2,0),DA=(2,0,0).7分设n=(x,y,z)是平面MAB...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

文章天下的最新文档

高中英语 Unit 2 Travelling around Section Ⅶ Reading for Writing——有关旅行计划的电子邮件学案 新人教版必修第一册-新人教版高一第一册英语学案
¥3.00元
21下载
高中英语 Unit 2 Travelling around Section Ⅵ The Rest Parts of the Unit(P30~34)学案 新人教版必修第一册-新人教版高一第一册英语学案
¥3.00元
16下载
高中英语 Unit 2 Travelling around Section Ⅴ Writing—有关旅游的电子邮件学案 新人教版必修1-新人教版高一必修1英语学案
¥3.00元
15下载
高中英语 Unit 2 Travelling around Section Ⅴ Writing教学案 新人教版必修第一册-新人教版高一第一册英语教学案
¥3.00元
14下载
高中英语 Unit 2 Travelling around Section Ⅴ Listening and Talking学案 新人教版必修第一册-新人教版高一第一册英语学案
¥3.00元
4下载
高中英语 UNIT 2 TRAVELLING AROUND Section Ⅳ单元要点复习学案(含解析)新人教版必修第一册-新人教版高一第一册英语学案
¥3.00元
27下载
高中英语 Unit 2 Travelling around Section Ⅳ Reading for Writing教学案 新人教版必修第一册-新人教版高一第一册英语教学案
¥3.00元
29下载
高中英语 Unit 2 Travelling around Section Ⅳ Listening and Talking Reading for Writing学案 新人教版必修1-新人教版高一必修1英语学案
¥3.00元
21下载
高中英语 Unit 2 Travelling around Section Ⅳ Discovering Useful Structures——现在进行时表将来学案 新人教版必修第一册-新人教版高一第一册英语学案
¥3.00元
6下载
高中英语 Unit 2 Travelling around Section Ⅲ Reading and Thinking(2)学案 新人教版必修第一册-新人教版高一第一册英语学案
¥3.00元
11下载
文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部