突破点8回归分析、独立性检验(对应学生用书第167页)提炼1变量的相关性(1)正相关:在散点图中,点散布在从左下角到右上角的区域.(2)负相关:在散点图中,点散布在从左上角到右下角的区域.(3)相关系数r:当r>0时,两变量正相关;当r<0时,两变量负相关;当|r|≤1且|r|越接近于1,相关程度越高,当|r|≤1且|r|越接近于0,相关程度越低.提炼2线性回归方程方程y=bx+a称为线性回归方程,其中b=,a=y-bx.(x,y)称为样本中心点.提炼3独立性检验(1)确定分类变量,获取样本频数,得到列联表.(2)求观测值:k=.(3)根据临界值表,作出正确判断.如果k≥kα,就推断“X与Y有关系”,这种推断犯错误的概率不超过α,否则就认为在犯错误的概率不超过α的前提下不能推断“X与Y有关系”.回访1变量的相关性1.(2015·全国卷Ⅱ)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()图81A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关D[对于A选项,由图知从2007年到2008年二氧化硫排放量下降得最多,故A正确.对于B选项,由图知,由2006年到2007年矩形高度明显下降,因此B正确.对于C选项,由图知从2006年以后除2011年稍有上升外,其余年份都是逐年下降的,所以C正确.由图知2006年以来我国二氧化硫年排放量与年份负相关,故选D.]2.(2016·全国丙卷)如图82是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008~2014.图82(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:∑yi=9.32,∑tiyi=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程y=a+bt中斜率和截距的最小二乘估计公式分别为b=,a=y-b.[解](1)由折线图中的数据和附注中的参考数据得=4,∑(ti-)2=28,=0.55,∑(ti-)(yi-)=∑tiyi-∑yi=40.17-4×9.32=2.89,2分∴r≈≈0.99.因为y与t的相关系数近似为0.99,说明y与t的线性相关程度相当高,从而可以用线性回归模型拟合y与t的关系.5分(2)由=≈1.331及(1)得b==≈0.103.a=-b≈1.331-0.103×4≈0.92.所以,y关于t的回归方程为y=0.92+0.10t.10分将2016年对应的t=9代入回归方程得y=0.92+0.10×9=1.82.所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨.12分回访2独立性检验3.(2014·江西高考)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1成绩性别不及格及格总计男61420女102232总计163652表2视力性别好差总计男41620女122032总计163652表3智商性别偏高正常总计男81220女82432总计163652表4阅读量性别丰富不丰富总计男14620女23032总计163652A.成绩B.视力C.智商D.阅读量D[A中,a=6,b=14,c=10,d=22,a+b=20,c+d=32,a+c=16,b+d=36,n=52,K2==.B中,a=4,b=16,c=12,d=20,a+b=20,c+d=32,a+c=16,b+d=36,n=52,K2==.C中,a=8,b=12,c=8,d=24,a+b=20,c+d=32,a+c=16,b+d=36,n=52,K2==.D中,a=14,b=6,c=2,d=30,a+b=20,c+d=32,a+c=16,b+d=36,n=52,K2==. <<<,∴与性别有关联的可能性最大的变量是阅读量.]4.(2014·安徽高考)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).图83(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图83所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60...