电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学总复习 7-5 课时跟踪练习 文(含解析)VIP免费

高考数学总复习 7-5 课时跟踪练习 文(含解析)_第1页
1/5
高考数学总复习 7-5 课时跟踪练习 文(含解析)_第2页
2/5
高考数学总复习 7-5 课时跟踪练习 文(含解析)_第3页
3/5
课时知能训练一、选择题1.已知直线l⊥平面α,直线m⊂平面β,下面三个命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β,则真命题的个数为()A.0B.1C.2D.32.(2012·东莞模拟)若平面α,β满足α⊥β,α∩β=l,P∈α,P∉l,则下列命题中的假命题为()A.过点P垂直于平面α的直线平行于平面βB.过点P在平面α内作垂直于l的直线必垂直于平面βC.过点P垂直于平面β的直线在平面α内D.过点P垂直于直线l的直线在平面α内3.若m、n是两条不同的直线,α、β是两个不同的平面,则下列命题不正确的是()A.若α∥β,m⊥α,则m⊥βB.若m∥n,m⊥α,则n⊥αC.若m∥α,m⊥β,则α⊥βD.若α∩β=m,且n与α、β所成的角相等,则m⊥n图7-5-114.如图7-5-11所示,已知△ABC为直角三角形,其中∠ACB=90°,M为AB中点,PM垂直于△ABC所在平面,那么()A.PA=PB>PCB.PA=PB<PCC.PA=PB=PCD.PA≠PB≠PC5.如图7-5-12,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A—BCD.则在三棱锥A—BCD中,下列命题正确的是()图7-5-12A.AD⊥平面BCDB.AB⊥平面BCDC.平面BCD⊥平面ABCD.平面ADC⊥平面ABC二、填空题图7-5-136.(2012·惠州质检)如图7-5-13所示,在四棱锥P—ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可).图7-5-147.如图7-5-14所示,在正三棱锥P—ABC中,D、E分别是AB、BC的中点,有下列三个论断:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE.其中正确论断的是________.图7-5-158.如图7-5-15所示,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E、F分别是点A在PB、PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.三、解答题9.如图7-5-16所示,三棱柱A1B1C1—ABC的三视图中,正(主)视图和侧(左)视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点.图7-5-16(1)求证:B1C∥平面AC1M;(2)求证:平面AC1M⊥平面AA1B1B.图7-5-1710.如图7-5-17所示,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB.图7-5-1811.如图7-5-18,在三棱锥A—BOC中,AO⊥平面COB,∠OAB=∠OAC=,AB=AC=2,BC=,D、E分别为AB、OB的中点.(1)求证:CO⊥平面AOB;(2)在线段CB上是否存在一点F,使得平面DEF∥平面AOC,若存在,试确定F的位置;若不存在,请说明理由.答案及解析1.【解析】 l⊥平面α,α∥β,∴l⊥β,又 直线m⊂平面β,∴l⊥m,命题①正确.②中l与m可能相交,也可能异面,故②错误.③中l∥m,l⊥平面α⇒m⊥α,又m⊂平面β,∴α⊥β,故③正确.【答案】C2.【解析】由两平面垂直的性质可推证A、B、C正确.在D选项中,过点P垂直于直线l的直线可以不在α内.【答案】D3.【解析】选项A、B、C容易判定,对于选项D,当直线m与n平行时,直线n与两平面α、β所成的角也相等,均为0°.D错.【答案】D4.【解析】 在Rt△ABC中,M为斜边的中点,∴MB=MC=MA.又 PM垂直于△ABC所在平面,∴PB=PC=PA.【答案】C5.【解析】在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD,又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,∴CD⊥平面ABD,∴CD⊥AB,又AD⊥AB,故AB⊥平面ADC,从而平面ABC⊥平面ADC.【答案】D6.【解析】由定理可知,BD⊥PC.∴当DM⊥PC时,即有PC⊥平面MBD,又PC⊂平面PCD.∴平面MBD⊥平面PCD.【答案】DM⊥PC(答案不唯一)7.【解析】显然AC∥DE⇒AC∥平面PDE.取等边三角形ABC的中心O,则PO⊥平面ABC,∴PO⊥AC又BO⊥AC因此AC⊥平面POB,则AC⊥PB.∴①、②正确.【答案】①②8.【解析】由题意知PA⊥平面ABC,∴PA⊥BC,又AC⊥BC,PA∩AC=A,∴BC⊥平面PAC.∴BC⊥AF. AF⊥PC,BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,AF⊥BC.又AE⊥PB,AE∩AF=A,∴PB⊥平...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学总复习 7-5 课时跟踪练习 文(含解析)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部