电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第六章 第4讲 数列求和 文(含解析)-人教版高三数学试题VIP免费

高考数学一轮复习 第六章 第4讲 数列求和 文(含解析)-人教版高三数学试题_第1页
高考数学一轮复习 第六章 第4讲 数列求和 文(含解析)-人教版高三数学试题_第2页
高考数学一轮复习 第六章 第4讲 数列求和 文(含解析)-人教版高三数学试题_第3页
第4讲数列求和一、选择题1.在等差数列中,,则的前5项和=()A.7B.15C.20D.25解析.答案B2.若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+…+a10=().A.15B.12C.-12D.-15解析设bn=3n-2,则数列{bn}是以1为首项,3为公差的等差数列,所以a1+a2+…+a9+a10=(-b1)+b2+…+(-b9)+b10=(b2-b1)+(b4-b3)+…+(b10-b9)=5×3=15.答案A3.在数列{an}中,an=,若{an}的前n项和为,则项数n为().A.2011B.2012C.2013D.2014解析 an==-,∴Sn=1-==,解得n=2013.答案C4.数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为().A.3690B.3660C.1845D.1830解析当n=2k时,a2k+1+a2k=4k-1,当n=2k-1时,a2k-a2k-1=4k-3,∴a2k+1+a2k-1=2,∴a2k+1+a2k+3=2,∴a2k-1=a2k+3,∴a1=a5=…=a61.∴a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(4×30-1)==30×61=1830.答案D5.已知数列{an}的通项公式为an=2n+1,令bn=(a1+a2+…+an),则数列{bn}的前10项和T10=()A.70B.75C.80D.85解析由已知an=2n+1,得a1=3,a1+a2+…+an==n(n+2),则bn=n+2,T10==75,故选B.答案B6.数列{an}满足an+an+1=(n∈N*),且a1=1,Sn是数列{an}的前n项和,则S21=().A.B.6C.10D.11解析依题意得an+an+1=an+1+an+2=,则an+2=an,即数列{an}中的奇数项、偶数项分别相等,则a21=a1=1,S21=(a1+a2)+(a3+a4)+…+(a19+a20)+a21=10(a1+a2)+a21=10×+1=6,故选B.答案B二、填空题7.在等比数列{an}中,若a1=,a4=-4,则公比q=________;|a1|+|a2|+…+|an|=________.解析设等比数列{an}的公比为q,则a4=a1q3,代入数据解得q3=-8,所以q=-2;等比数列{|an|}的公比为|q|=2,则|an|=×2n-1,所以|a1|+|a2|+|a3|+…+|an|=(1+2+22+…+2n-1)=(2n-1)=2n-1-.答案-22n-1-8.等比数列{an}的前n项和Sn=2n-1,则a+a+…+a=________.解析当n=1时,a1=S1=1,当n≥2时,an=Sn-Sn-1=2n-1-(2n-1-1)=2n-1,又 a1=1适合上式.∴an=2n-1,∴a=4n-1.∴数列{a}是以a=1为首项,以4为公比的等比数列.∴a+a+…+a==(4n-1).答案(4n-1)9.已知等比数列{an}中,a1=3,a4=81,若数列{bn}满足bn=log3an,则数列的前n项和Sn=________.解析设等比数列{an}的公比为q,则=q3=27,解得q=3.所以an=a1qn-1=3×3n-1=3n,故bn=log3an=n,所以==-.则Sn=1-+-+…+-=1-=.答案10.设f(x)=,利用倒序相加法,可求得f+f+…+f的值为________.解析当x1+x2=1时,f(x1)+f(x2)=+==1.设S=f+f+…+f,倒序相加有2S=++…+f+f=10,即S=5.答案5三、解答题11.等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.(1)求an与bn;(2)求++…+.解(1)设{an}的公差为d,{bn}的公比为q,则d为正数,an=3+(n-1)d,bn=qn-1.依题意有解得或(舍去)故an=3+2(n-1)=2n+1,bn=8n-1.(2)Sn=3+5+…+(2n+1)=n(n+2),所以++…+=+++…+===-.12.已知数列{an}的前n项和为Sn,且a1=1,an+1=Sn(n=1,2,3,…).(1)求数列{an}的通项公式;(2)设bn=log(3an+1)时,求数列的前n项和Tn.解(1)由已知得得到an+1=an(n≥2).∴数列{an}是以a2为首项,以为公比的等比数列.又a2=S1=a1=,∴an=a2×n-2=n-2(n≥2).又a1=1不适合上式,∴an=(2)bn=log(3an+1)=log=n.∴==-.∴Tn=+++…+=+++…+=1-=.13.设数列{an}满足a1+3a2+32a3+…+3n-1an=,n∈N*.(1)求数列{an}的通项;(2)设bn=,求数列{bn}的前n项和Sn.思维启迪:(1)由已知写出前n-1项之和,两式相减.(2)bn=n·3n的特点是数列{n}与{3n}之积,可用错位相减法.解(1) a1+3a2+32a3+…+3n-1an=,①∴当n≥2时,a1+3a2+32a3+…+3n-2an-1=,②①-②得3n-1an=,∴an=.在①中,令n=1,得a1=,适合an=,∴an=.(2) bn=,∴bn=n·3n.∴Sn=3+...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部