第五讲巧求周长和面积编写说明“巧求周长和面积”的相关内容我们在寒假小4第四讲给予过一定的讲解.本讲我们主要在原有知识的基础上进行提高巩固,同时加入一些新的知识,帮助我们更好的过渡到五年级几何部分的学习.对于一些非常典型的例题,我们采用“重复加强”的学习方法,帮助孩子们牢固掌握.奥数的题目虽然很多,但一些经典题目,常常会以原题形式出现在各个中学入学测试题中,希望我们的孩子能戒骄戒躁,温故而后知新,清晰彻底的掌握理解自己学习过题目.你还记得吗【复习1】右图中是一个方形螺线.已知两相邻平行线之间的距离均为l厘米,求螺线的总长度.分析:如下图所示,将原图形转化为3个边长分别为3、5、7厘米的正方形和中间一个三边图形.所以螺线的总长度为:(3+5+7)×4+1×3=63cm.【复习2】用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色的,其它地方铺白色的,如图所示。如果铺满这块地面共用101块黑色瓷砖,那么白色瓷砖用了多少块?分析:我们可以让静止的瓷砖动起来,把对角线上的(101+1)÷2=51块黑瓷砖,通过向上或向右平移处理,移到两条边上(如图2)。在这一转化过程中瓷砖的位置发生了变化,但数量没有变,此时白色瓷砖组成一个正方形。(101+1)÷2=51(大正方形的边长),51-1=50(白色瓷砖组成正方形的边长),50×50=2500(块),所以白色瓷砖共用了2500块。【复习3】有10张长3厘米,宽2厘米的纸片,将它们按照右图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?分析:每多盖一张,遮住的面积增加2×1,所以这10张纸片所盖住的桌面的面积是3×2+2×1×9=24cm2.【复习4】有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间相互叠合(如右图),已知露在外面部分中,红色面积是20,黄色面积是12,绿色面积是8,那么正方形盒的底面积是多少?分析:黄色纸片露出部分与绿色纸片露出部分面积不同,把黄色纸片向左移动,在这个移动过程中,黄色纸片露出部分减少的面积等于绿色纸片纸片露出部分增加的面积,它们露出的面积和不变,所以图2中黄色露出部分面积为10,绿色面积也为10。红、黄、绿三个长方形的面积已经求出,因为长方形中对角的面积乘积相等,故有:黄×绿=红×白。空白长方形的面积应为10×10÷20=5,纸盒的底面积为20+10+10+5=45。解答此题的关键是让黄色正方形纸片移动,使复杂的图形变为基本图形。巧求周长【例1】(希望杯1试)如右图,正方形ABCD的边长是6厘米,过正方形内的任意两点画直线,可把正方形分成9个小长方形。这9个小长方形的周长之和是多少厘米?分析:从总体考虑,在求这9个小长方形的周长之和时,AB、BC、CD、AD这四条边被用了1次,其余四条线被用了2次,所以9个小长方形的周长之和是:4×6+4×2×6=72(厘米).【巩固】计算右面图形的周长(单位:厘米).分析:要求这个图形的周长,似乎不可能,因为缺少条件.但是,我们仔细观察这个图形,发现它的每一个角都是直角,所以,我们可以将图中右上缺角处的线段分别向上、向右平行移动到虚线处(见右下图),这样正好移补成一个长方形。求长方形的周长就易如反掌了.图形的周长是:(10+15)×2=50(厘米).这个思路熟悉以后,我们要学会从总体考虑.【例2】如右图所示,在一个正方形内画中、小两个正方形,使三个正方形具有公共顶点,这样大正方形被分割成了正方形区域甲,和L形区域乙和丙.甲的边长为4厘米,乙的边长是甲边长的1.5倍,丙的边长是乙边长的1.5倍,那么丙的周长为多少厘米?EF长多少厘米?分析:乙的周长实际上是正方形AHJE的周长(我们可将乙与甲重合的部分“掰过来”),同理丙的周长也就是正方形ABCD的周长,那么AE=1.5×4=6,AD=1.5×6=9,丙的周长为36厘米,EF=AE-AF=6-4=2(厘米).【例3】有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如图)的面积是45平方厘米,求这个大长方形的周长.分析:【前铺】右图的长方形被分割成5个正方形,已知原长方形的面积为120cm2,求原长方形的长与宽。分析:设小正方形边长为a,那么大正方形的边长为1.5a,所以长方形的长、宽分别为3a、2.5a,7.5×a×a=...