电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第九章 导数及其应用 9.3 导数在实际问题中的应用及综合应用讲义-人教版高三数学试题VIP免费

高考数学一轮复习 第九章 导数及其应用 9.3 导数在实际问题中的应用及综合应用讲义-人教版高三数学试题_第1页
1/21
高考数学一轮复习 第九章 导数及其应用 9.3 导数在实际问题中的应用及综合应用讲义-人教版高三数学试题_第2页
2/21
高考数学一轮复习 第九章 导数及其应用 9.3 导数在实际问题中的应用及综合应用讲义-人教版高三数学试题_第3页
3/21
§9.3导数在实际问题中的应用及综合应用考纲解读考点内容解读要求五年高考统计常考题型预测热度20132014201520162017导数在实际问题中的应用及综合应用1.实际问题中的最值问题2.函数综合问题的探究B19题16分填空题解答题★★★分析解读导数的实际应用和综合应用是江苏高考热点内容,一般放在压轴题位置,重点考查学生分析问题的能力,对数学素养要求很高.五年高考考点导数在实际问题中的应用及综合应用1.(2015课标Ⅰ改编,12,5分)设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是.答案2.(2015安徽,15,5分)设x3+ax+b=0,其中a,b均为实数.下列条件中,使得该三次方程仅有一个实根的是.(写出所有正确条件的编号)①a=-3,b=-3;②a=-3,b=2;③a=-3,b>2;④a=0,b=2;⑤a=1,b=2.答案①③④⑤3.(2017天津理,20,14分)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3-3x2-6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(1)求g(x)的单调区间;(2)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m-x0)-f(m),求证:h(m)h(x0)<0;(3)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足≥.解析(1)由f(x)=2x4+3x3-3x2-6x+a,可得g(x)=f'(x)=8x3+9x2-6x-6,进而可得g'(x)=24x2+18x-6.令g'(x)=0,解得x=-1或x=.当x变化时,g'(x),g(x)的变化情况如下表:x(-∞,-1)g'(x)+-+g(x)↗↘↗所以,g(x)的单调递增区间是(-∞,-1),,单调递减区间是.(2)证明:由h(x)=g(x)(m-x0)-f(m),得h(m)=g(m)(m-x0)-f(m),h(x0)=g(x0)(m-x0)-f(m).令函数H1(x)=g(x)(x-x0)-f(x),则H1'(x)=g'(x)(x-x0).由(1)知,当x∈[1,2]时,g'(x)>0,故当x∈[1,x0)时,H1'(x)<0,H1(x)单调递减;当x∈(x0,2]时,H1'(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=-f(x0)=0,可得H1(m)>0,即h(m)>0.令函数H2(x)=g(x0)(x-x0)-f(x),则H2'(x)=g(x0)-g(x).由(1)知g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H2'(x)>0,H2(x)单调递增;当x∈(x0,2]时,H2'(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0,2]时,H2(x)0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f≠0.又因为p,q,a均为整数,所以|2p4+3p3q-3p2q2-6pq3+aq4|是正整数,从而|2p4+3p3q-3p2q2-6pq3+aq4|≥1.所以≥.所以,只要取A=g(2),就有≥.4.(2014江苏,19,16分)已知函数f(x)=ex+e-x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)0),则t>1,所以m≤-=-对任意t>1成立.因为t-1++1≥2+1=3,所以-≥-,当且仅当t=2,即x=ln2时等号成立.因此实数m的取值范围是.(3)令函数g(x)=ex+-a(-x3+3x),则g'(x)=ex-+3a(x2-1).当x≥1时,ex->0,x2-1≥0,又a>0,故g'(x)>0,所以g(x)是[1,+∞)上的单调增函数,因此g(x)在[1,+∞)上的最小值是g(1)=e+e-1-2a.由于存在x0∈[1,+∞),使+-a(-+3x0)<0成立,当且仅当最小值g(1)<0,故e+e-1-2a<0,即a>.令函数h(x)=x-(e-1)lnx-1,则h'(x)=1-.令h'(x)=0,得x=e-1.当x∈(0,e-1)时,h'(x)<0,故h(x)是(0,e-1)上的单调减函数;当x∈(e-1,+∞)时,h'(x)>0,故h(x)是(e-1,+∞)上的单调增函数.所以h(x)在(0,+∞)上的最小值是h(e-1).注意到h(1)=h(e)=0,所以当x∈(1,e-1)(0,e-1)⊆时,h(e-1)≤h(x)

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第九章 导数及其应用 9.3 导数在实际问题中的应用及综合应用讲义-人教版高三数学试题

您可能关注的文档

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群