电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学二轮复习 大题考法专训(二)数列-人教版高三全册数学试题VIP免费

高考数学二轮复习 大题考法专训(二)数列-人教版高三全册数学试题_第1页
1/3
高考数学二轮复习 大题考法专训(二)数列-人教版高三全册数学试题_第2页
2/3
高考数学二轮复习 大题考法专训(二)数列-人教版高三全册数学试题_第3页
3/3
大题考法专训(二)数列A级——中档题保分练1.已知数列{an}为等比数列,首项a1=4,数列{bn}满足bn=log2an,且b1+b2+b3=12.(1)求数列{an}的通项公式;(2)令cn=+an,求数列{cn}的前n项和Sn.解:(1)由bn=log2an和b1+b2+b3=12,得log2(a1a2a3)=12,∴a1a2a3=212.设等比数列{an}的公比为q,∵a1=4,∴a1a2a3=4·4q·4q2=26·q3=212,解得q=4,∴an=4·4n-1=4n.(2)由(1)得bn=log24n=2n,cn=+4n=+4n=-+4n.设数列的前n项和为An,则An=1-+-+…+-=,设数列{4n}的前n项和为Bn,则Bn==(4n-1),∴Sn=+(4n-1).2.已知首项为2的数列{an}的前n项和为Sn,Sn=,设bn=log2an.(1)求数列{an}的通项公式;(2)判断数列{bn}是否为等差数列,并说明理由;(3)求数列的前n项和Tn.解:(1)依题意得a1=2,则n=1时,S1==a1,∴a2=8.n≥2时,Sn-1=,则an=Sn-Sn-1=-,整理得=4.又=4,∴数列{an}是首项为2,公比为4的等比数列,∴an=2·4n-1=22n-1.(2)bn=log2an=log222n-1=2n-1,则bn+1-bn=2n+1-(2n-1)=2,且b1=1,∴数列{bn}是等差数列.(3)由(2)得bn=2n-1,∴===-,∴Tn=++…+=.3.(2019·福州模拟)已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.(1)求数列{bn}的通项公式;(2)令cn=,求数列{cn}的前n项和Tn.解:(1)因为Sn=3n2+8n,所以当n≥2时,an=Sn-Sn-1=3n2+8n-[3(n-1)2+8(n-1)]=6n+5.当n=1时,a1=S1=11也符合上式,所以an=6n+5,n∈N*.于是,bn+1+bn=an=6n+5.因为{bn}是等差数列,所以可设bn=kn+t(k,t均为常数),则有k(n+1)+t+kn+t=6n+5,即2kn+k+2t=6n+5对任意的n∈N*恒成立,所以解得故bn=3n+1.(2)因为an=6n+5,bn=3n+1,所以cn===2n×(6n+6).于是,Tn=12×2+18×22+24×23+…+2n×(6n+6),①所以2Tn=12×22+18×23+24×24+…+2n×6n+2n+1×(6n+6),②①-②得,-Tn=24+6(22+23+…+2n)-2n+1×(6n+6)=24+6×-2n+1×(6n+6)=-2n+1×6n,故Tn=2n+1×6n=2n+2×3n.B级——拔高题满分练1.(2020届高三·长沙摸底)已知数列{an}的首项a1=3,a3=7,且对任意的n∈N*,都有an-2an+1+an+2=0,数列{bn}满足bn=a2n-1,n∈N*.(1)求数列{an},{bn}的通项公式;(2)求使b1+b2+…+bn>2019成立的最小正整数n的值.解:(1)令n=1,得a1-2a2+a3=0,解得a2=5.又由an-2an+1+an+2=0,知an+2-an+1=an+1-an=…=a2-a1=2,故数列{an}是首项a1=3,公差d=2的等差数列,于是an=2n+1,bn=a2n-1=2n+1.(2)由(1)知,bn=2n+1.于是b1+b2+…+bn=(21+22+…+2n)+n=+n=2n+1+n-2.令f(n)=2n+1+n-2,易知f(n)是关于n的单调递增函数,又f(9)=210+9-2=1031,f(10)=211+10-2=2056,故使b1+b2+…+bn>2019成立的最小正整数n的值是10.2.已知{an}是各项都为正数的数列,其前n项和为Sn,且Sn为an与的等差中项.(1)求数列{an}的通项公式;(2)设bn=,求{bn}的前n项和Tn.解:(1)由题意知,2Sn=an+,即2Snan-a=1,①当n=1时,由①式可得S1=1;当n≥2时,an=Sn-Sn-1,代入①式,得2Sn(Sn-Sn-1)-(Sn-Sn-1)2=1,整理得S-S=1.所以{S}是首项为1,公差为1的等差数列,S=1+n-1=n.因为{an}的各项都为正数,所以Sn=,所以an=Sn-Sn-1=-(n≥2).又a1=S1=1,所以an=-.(2)bn===(-1)n(+),当n为奇数时,Tn=-1+(+1)-(+)+…+(+)-(+)=-;当n为偶数时,Tn=-1+(+1)-(+)+…-(+)+(+)=.所以{bn}的前n项和Tn=(-1)n.3.(2019·天津高考)设{an}是等差数列,{bn}是等比数列,公比大于0.已知a1=b1=3,b2=a3,b3=4a2+3.(1)求{an}和{bn}的通项公式.(2)设数列{cn}满足cn=求a1c1+a2c2+…+a2nc2n(n∈N*).解:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.依题意,得解得故an=3+3(n-1)=3n,bn=3×3n-1=3n.所以数列{an}的通项公式为an=3n,{bn}的通项公式为bn=3n.(2)a1c1+a2c2+…+a2nc2n=(a1+a3+a5+…+a2n-1)+(a2b1+a4b2+a6b3+…+a2nbn)=+(6×31+12×32+18×33+…+6n×3n)=3n2+6(1×31+2×32+…+n×3n).记Tn=1×31+2×32+…+n×3n,①则3Tn=1×32+2×33+…+n×3n+1,②②-①得,2Tn=-3-32-33-…-3n+n×3n+1=-+n×3n+1=.所以a1c1+a2c2+…+a2nc2n=3n2+6Tn=3n2+3×=(n∈N*).

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学二轮复习 大题考法专训(二)数列-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部